RECORDS

SURVEY OF INDIA

Volume \mathbf{X}

ANNUAL REPORTS OF

PaRTIES AND OFFICES

1915-16.
 PREPARED UNDER THE DIRECTION OF

Colonel Sir S. G. BU RRARD, K. C. S. I., R. E., F. R. S.
Surveyor General of India.

DEHRA DON
PRINTED AT THE OFFICE OF THF TRIGONOMETRICAL SURVEY 1917

Price Four Rupees or Five Shillings and Four Pence.

Surven of 解dia.

goll of fionour.

Captan E. C. Bakbi, k, e.

Cabtan G. F. T. Oikes, i. e.

Captan J. A. Field, r. e.

Captian P. G. IUudieston, li. e.

Lieutenint R. I. Almonip, r. e.

Lieltenint II. M. McKif, r.e.

Lieutenint V. D. B. Collins.

survey OF INDIA.

LIEUTENANT R. L. ALMOND, R.E.
Born 13th January 1887.
Entered the Army, 18th December 1907.
Appointed to the Survey of India, 21st December 1912.
KILLED IN ACTION AT NEUVE CHAPELLE, FRANCE ON OR
ABOUT 28TH OCTOBER 1914 WHILE SERVING
WITH 3RD SAPPERS AND MINERS.

SURVEY OF INDIA.

Born 6th December 1888
Entered the Army, 29th July 1908
Appointed to the Survey of India, 11th December 1912.
KILLED IN ACTION, IN FRANCE, ON 13Th NOVEMBER 1914.
While serving with 3rd Sappers and Miners.

SURVEY OF INDIA.

LIEUTENANT V. D. B. COLLINS.
Born 10th January 1885.
Appointed to the Provincial Service, Survey of India, on 1st November 1904.
Received a Commission in the 13th (Service) Battalion, The Sherwood Foresters
(Nottingham and Derbyshire Regiment), on 17th December 1914.
KILLED IN ACTION, IN FRANCE, ON 9TH MAY 1915 WHILE SERVING
WITH THE 2ND KING EDWARD'S OWN GURKHA RIFLES
(THE SIRMOOR RIFLES).

解all of 郵onour.

SURVEY OF INDIA.

CAPTAIN P. G. HUDDLESTON, R.E.
Born 28th April 1886.
Entered the Army, 16th January 1906.
Appointed to the Survey of India, 4th September 1909.
KILLED IN ACTION, IN FRANCE, ON 25TH MARCH 1916.

里解 of 新0mour

survey of INDIA．

CAPTAIN J．A．FIELD，R．E．
Born 2nd May 1884.
Entered the Army，15th July 1903.
Appointed to the Survey of India，11th January 1908.
KILLED IN ACTION，IN FRANCE，ON JULY 13TH， 1916.
Previous War Service：－Abor Expedition， 1912.

SURVEY OF INDIA.

CAPTAIN G. F. T. OAKES, R.E.
Born 11th February 1883.
Entered the Army, 21st December 1901.
Appointed to the Survey of India, 2nd March 1907.
DIED OF WOUNDS RECEIVED IN ACTION THE SAME DAY, IN FRANCE ON 15 тн JULY 1916.
Previous War Service :-Abor Expedition, 1911-12.

里解 of 期omour．

SURVEY OF INDIA．

CAPTAIN E．C．BAKER，R．E．
Bom 1st January 1880.
Entered the Army，25th June 1900.
A ppointed to the Survey of India，12th January 1906.
Severely wounded in France on September 15th， 1916.
DIED OF HIS WOUNDS ON 19TH SEPTEMBER 1916.
Previous War Service：－Mohmand Field Force． 1908.

CONTENTS.

PARTI.
TOPOGRAPHICAL SURVEY.
Page 3
No. 1 Party 3
No. 2 Party 5
No. 3 Party 6
No. 4 Party 8
No. 20 Party (Cantonment) 10
The Riverain Detachment 11
The Simla Survey Detachment 14
SOUTHERN CIRCLE. Summary 15
No. 5 Party 15
No. 6 Party 16
No. 7 Party 18
No. 8 Palty 22
EASTERN CIRCLE. Summary 23
No. 9 Party 23
No. 10 Party 24
No. 11 Party 26
No. 12 Party 28
Table I.-Out-turns of Detail Survey 30
Table II.-Details of Triangulation and Traversing 32
Table III.-Cost-rates of Sulvey 34
PART II
GEODETIC AND SCIENTIFIC OPERATIONS.
Astronomical Latitudes. No. 13 Party. 37
Pendulem Operations. No. 14 Party. 37
Triangulation. No. l.j Party. 39
Tidal Operations. No. 16 Party. 41
Levellivg. No. 17 Party. 51
Magnetic Survey. No. 18 Palty. 61
Base Line. No. 19 Party. 87
Tite Complting Office. Computing Section 87
Printing Section 89
Workshops 89
The Seismograph 91
Solar Photography 92
PART III.
SPECIAL REPORT.
Pagb
Traverse of the Boundary of the Imperial Delfi Area 93
APPENDIX.
List of Survey of India Publications 97
ILLUS'TRA'IIONS.
Rope Bridge over Kishengunga River in Kashmir 3
Chathay Island, Port Blair 24
Integrator for calculating Atriactions.
Designed by Mr. J. de Graaff Hunter 90
Traverse chart of Imperial Delhi 93
INDEX MAPS AND CHARTS.
No.
ALL SCaLES, Modern Surveyand Publication. Northern Circle 1
Southern Circle 2
Eastern Circle 3
ONE-INCH SERIES, Modern.-Northern Circle 4
Southern Circle 5
Eastern Circle 6
do. do. Piovisional Edition-Northern Circle 7
Eastern Circle 8
HALF-INCH SERIES, Modern 9
qUarter-INCH SERIES, Modern 10
$1: 1,000,000$. "India and Adjacent Countries" Series 11
do. Carte Internationale 12
$1: 2,000,000$, 'Southern Asia' Series 13
Chart of the Great Trigonometical Surveq 14
Triangulation Pamphlets 15
Magnetic Survey 16

PART I.-TOPOGRAPHICAL SURVEY.
 NORTHERN CIRCLE.

(Vide Index Maps 1 and 4).
Summary.-Four field parties worked in this Circle and completed the detail survey of 8168 square miles of country during the field season of the year under report.

This consists of :-

114 square miles of 4 -inch survey.			
495	"	"	, 4-inch supplementary survey.
391	"	"	, 2-inch survey.
23:0	"	"	, l-inch surver.
3997	"	"	, l-inch revision survey.
800	"	"	,, l-inch re-survey.
51			, $\frac{1}{4}$-inch revision survey

The work of the Riverain Detachment is given in detail on pages 9-12.
No. 20 Party carried out the survey of 18958 and 343 acres on the scales of 16 inches and 64 inches $=1$ mile respectively in 13 cantonments during the year. This party also ran 381 linear miles of theodolite traversing as a basis for future detail operations.

The Simla Survey Detachment completed the large-scale survey of Simla during the year, and 14 out of the 32 fair sheets in which the map will be published had been sent for publication by 30th September 1916.

Colonel W. J. Bythell, R. E., proceeded on leave on 23rd November 1915 and was succeeded in charge of the Circle by Lieutenant-Colonel C. L. Robertson, C. M. G., R. E., till the end of the year.

No. 1 PARTY.
By B. R. Hughes.
The office of the party, with bulk of the establishment, remained at Mussoorie throughout the year.

The country surveyed in Jammu was mountainous and the valleys well wooded, and that in Shabkadar open, partly cultivated, plain and barren hills.

The health of the detachments in the field was good. During the recess however a computer, Aftab Bhan, died of cholera.

Topography. - A section of the party had been working in the field since the summer of 1915 in the Kishtwir and Udhampur districts of the Jammu Province of Kashmir.

The work allotted to it having been completed the section returned to Mussoorie about the middle of December 1915.

This section under Mr. R. C. Hanson with y surveyors, completed the survey on the scale of 1 inch $=1$ mile in the following sheets:-

Sheets Nos. $48 \frac{\mathrm{~N}}{19}$ and $43 \frac{0}{7,0,10,11,14 \text { and } 15}$, also in parts of sheets Nos. $52 \frac{\mathrm{c}}{3,4,7 \text { and } 8}$ and $5: \frac{\mathrm{D}}{1}$.
'Ihe outturn was 588 square miles, and the cost-rate of topography Rs. $17 \cdot 4$ per square mile.

A small area on the scale of 4 miles $=1$ inch was revised by this section in parts of the following sheets:-

$$
\text { Nos. } 43 \frac{\mathrm{~N}}{12 \text { and } 10} \text { and } 43 \frac{0}{19} .
$$

The outturn on this scale was 51 square miles, and the cost-rate of topography Rs. 13.3 per square mile.

The heavy cost-rate is due to the fact that the country was difficult of access and the weather inclement, there were difficulties too in obtaining transport.

Another section of the party was sent to the field from Mussoorie about the middle of November 1915, to undertake a military survey on the scale of 4 inches $=1$ mile on the Mohmand Frontier between Shabkadar and Michni in the Peshāwar district. This was under Mr. P. A. T. Kenny with a staff of 6 surveyors.

Khan Bahadur Sher Jang also assisted in the preliminary arrangements.
This work lay in parts of sheets Nos. $38 \frac{\mathrm{~N}}{8,11 \text { nnd } 12}$.
The outturn was $64 \cdot 2$ square miles, and the cost-rate of topography Rs. $135 \cdot 9$ per square mile.

During December 1915, Major E. A. Tandy, R. E., proceeded to Bīkaner and Pälanpur States and advised the authorities there on the question of town surveys.

At the special request of the Bikaner Durbar, Mr. Nanak Chand Puri was deputed to supervise the work of the State surveyors and to instruct them in the correct methods of surveying. In aldition to this Mr. Nanak Chand Puri did some detail survey with a view to bringing the guide map of Bikaner up to date; certain traversing was also necessary and a traverser was lent to the State for the purpose of executing a frame work of main and subcircuits in the city of Bikaner.

The entire cost of the different classes of work was borne by the State.
Triangulation.- No triangulation in advance has been done during the year under report.

A few further points however were fixed by Mr. Kenny in the course of detail survey in Shabkalar from 4 old stations triangulated by Mr. W. Newland in 1906-07, but as the area was small, riz: 16 square miles, and the work took only 3 days, no cost-rates have been taken out.

Traversiny.-To supplement the triangulation in the flat portion of the Shabkadar area, traverses, of a total of 15 linear miles, were carried out by Mr. P. A. 'F. Kenny and one traverser. The cost-rate of this works out to $\mathrm{Rs} .15 \cdot 1$ per linear mile.

Recess duties.-Nine fair sheets have been drawn and sent in for publication on the
 $52-\frac{c}{7}$. With the exception of sheet No. $52 \frac{c}{7}$ all of them are of the previous year's survey.

The fair drawing of sheet No. $43 \frac{\mathrm{~N}}{12}$, which had been partly surveyed and fair drawn in previous year, and of which the survey had been completed during the year under report, was also completed, and the sheet submitted for publication.

Ten fair sheets are in hand, and will be sent in for publication shortly, viz:-sheets
 to $1915-16$. The fair clrawing of one sheet, No. $52 \frac{\pi}{1}$, has not yet been commenced.

The outturn of mapping on the $1 \frac{1}{2}$-inch scale, for publication on that of 1 -inch, was ≥ 340 square miles, and the cost-rate Rs. $11 \cdot 8$ per square mile.

The three sheets of the Shabkadar survey have all been sent in for publication on the scale of t inches $=1$ mile.

The outturn was $f i t$ square miles and the cost-rate Rs. $10 \cdot 0$ per square mile.
Three sheets of the half-inch mapping have been sent in for publication, riz:-sheets Nos. 13 s.e., s.e. as. ${ }^{6} \bar{w}^{-}$
 another.

The cost-rate of this mapping is Rs. $\boldsymbol{j} \cdot 0$ per arquare mile.
The computations in connection with the Bikaner traverse were all completed during the course of that wurk.

This party also helped in the fair drawing, etc., of the Basrah Survey Party at Mussoorie during August and September by lending the services of 7 surveyors, etc., at a cost of Rs. 295. The expenditure has been borne by No. 1 Party and has gone to swell cost-rates of the party.

Inspections.-The party was inspected once by the Surveyor General and on several occasions by the Superintendent, Northern Circle.

The Superintendent, Map Publication also visited the party at Mussoorie in August.

No. 2 PARTY.

By T. W. Babonau.
The head-quarters of the party remained at Mussoorie throughout the year. The party was employed in the field in triangulating
Personnel.
Procincial Officers.
Mr. B. R. Hughes. in ehurge to Gth June 1916.
, T. W. Bahonau, in charge frum 7th June 1916.
" F. B. Powell.
" Kanak Singh, up to 2 list March 1916.
" R. E. Suubolle.
, J. H. Johuenn
" J. d. Calvert.
Upper Subordinate Service.
Mr. Chuni Lul Kupur.
Ghulmm Hasan (Probationer), from lst April 1916.

Luver Suburdinate Service.
30 Surveyors, etc.
The field season began on the 9 th November 1915, and ended on the th April 1916.
The health of the establishment was good throughout the season.
Topography.-The survey was executed in 11 sheets, viz:-

$$
\text { Sheets Nos. } \quad 44 \frac{\mathrm{P}}{\theta_{1} 10,13,1+\& 16} \text { and } 53 \frac{\mathrm{D}}{3,4,7, b_{1} 12 \& 1 \theta} .
$$

One camp, consisting of Mr. Chmi Lal Kapur and twelve surveyors, under Mr. Saubolle, carried out the survey of these sheets.

It was based on the plotted village trijunctions, where old data was fortheoming, and on trigonometrically intersected points elsewhere.

Where a comparison of the co-ordinate values of identical points as derived from triangulation and from revenue survey operations was possible, a discrepancy of over 200 feet was found.

The outturn of the party was:-
Revision survey on scale of 1 inch $=1$ mile

\[

\]

The average cost-rate of the topography was Rs. 8 per square mile.
Triangulation for $\frac{1}{2}$-inch detail survey was carried out in sheets Nos. $54 \frac{\Delta}{11,12,15 \& 16}$, and in portions of sheets Nos. $54 \frac{1}{7 \alpha-\overline{8}}$. Mr. Calvert was employed on this and completed 1260 square miles.

The cost-rate, including that of computation, works out to Rs. $6 \cdot 6$ per square mile.
Traversing, with theodolite and chain was run in sheets Nos. $54 \frac{E}{3,4,6,7,11812}$. The positions of conspicuous objects were intersected from the traverse stations. 313 linear miles of this traverse were completed.

The cost-rate including computation works out to Rs. 9 per linear mile.
Recess duties.-(a) The fair drawing was executed on the one and a half inch scale for reduction to one-inch by one drawing section under Mr. Johnson and one typing section under Mr. Saubolle; the average number of surveyors employed therein was nine. Mr. Ghulam IIasan drew outline sheet No. $4 \frac{\mathrm{D}}{12}$, and helped generally in the work of these sections.

The drawing of most of the l-inch sheets was carried out partly by the direct process.
All the fair drawing of sheets Nos. $14 \frac{p}{10,14+15}$ and $53 \frac{n}{1,4,7,8,12}$ remained incomplete at the end of the survey year. This was due largely to the demands of the Basrah Survey Party for skilled draftsmen.

Cost-rate of this fair drawing works out to Rs. $6 \cdot 15$ per square mile.
(b) The fair drawing of the half-inch section was continued throughout the recess season under Mr. F. B. Powell, whose mapping section remained in Mussoorie throughout the whole year under report.

10 half-inch sheets were submitted for publication, and five are under preparation. Seven of the sheets submitted for publication were completed to margin from old surveys on the half-inch, the remaining portions being compiled from modern one-inch pablished sheets.

The cost-rate of half-inch fair drawing works ont to Rs. $2 \cdot 15$ per square mile.
(c) The computations of the triangulation and traversing and the plotting of the results were carried out by Messrs. Calvert and Chuni Lal Kapur and a computer and completed by the middle of September.

The cost-rate of the computations works out to Rs. $2 \cdot 4$ per square mile.
Miscellaneons.-(id) A four-inch survey of the hend works of the Lower Bäri Doinb Canal and the surrounding country was executed for the Irrigation Branch of the Punjab Public Works Department. This was fair drawn on the same scale, and supplied to the Executive Engineer, lst Division, Lower Bāri Doäb Canal with an index on the l-inch scale.

As the fair mapping has not been completed, the cost of the work cannot be submitted.
(1) Mr. Kanak Singh did not take the field, but was employed on the $\frac{1}{2}$-inch mapping of No. 3 Party to the date of his retirement on 21st March 1916. This work was then taken over hy Mr. J. H. Johnson who returned from 2 months' privilege leave on lst March.

Inspertions.-The Superintendent, Northern Circle, inspected the party during recess.
The Surveyor General inspected the party in the month of September 1916.

No. 3 PARTY.

By H. H. B. Hanby.

The programme of the party lay in the United Provinces, and embraced parts of the districts of Meerut, Bijnor, Morädābäd, Garhwàl,

Personyil.

Pronincial Officers.
Mr. R. H. H. Fanby, in charge.
" E. J. Biggie.
" A. M. Inlati.
\because H. T. Hughes.
\because G. E. H. Cnoper.
" Minqimaiden.
Clpar Subordinate Sercice.
Mr. Mahomed Lurf Ali.
n Muh-mmad Homin.

- A. A. 8. Matlub Ahmad (Probationer), from 1st A pril 1916.

Lomer Sinhordinate Service.
b3 Surteyors. etc.

Almorñ, Nainī 'In̄l and Rāmpur State (Rohil-
khand). It surveyed an area of 3088 square miles on all scales. 'Triangulation and traversing were also carried out in advance for future surveys on scales of 4 inches, and l inch to a mile.

The southern half of the area under survey is practically flat except for the presence of a series of low sandy ridges, running generally parallel to the Ganges river. The low lying khälar land on both banks of the Ganges is covered with tall grass. Dense forest growth was met with along the foot-hills of southern Garhwall, and in parts of the Käshipur tahsil and Bhäbar of district Naini Till. The northern half consists of densely forest-clad and intricate hills, the greater part of which is reservel forest. The only rivers of importance flowing through the work are the Ganges and the Rimgangi.

The field heal-quarters of the party opened at Najibaibid on the 8th November 1915, and returned to Mussorie on the lst May 191b. Field operations however continued till the end of June 1916.

The health of the party during the field was, on the whole, fair, but during recess, seven men were given leave for various periods on account of ill health and one unclassified drafteman dien of rholera in Muasomerie.

Tounyruphy.-The area surveyed embraced the following sheets, viz:-the whole of

The surveyors were dirilel into + camps; Mr. E. J. Biggie was in charge of the survey

 Mahomel Lutf Ali of that of shept No. $73 \frac{\mathrm{~K}}{15}$ and the 28 four-inch sheets of the Remnagar Forest Divinion, riz:-Nos. 16, 17, 18, 19, 20, 21, 22, 23, 2t, 25, 26, 20(a), 27, 28, 29, 30, 31, S1(a), 32, 33, 34, 35, 37, 39, 39, 40. 44 and 45.

Blue prints of sheets Nos. $53 \frac{\mathbf{K}}{4, \theta, 12 \& 16}$ were obtained from Calcutta on drawing paper mounted on cloth, these were then mounted on to plane-tables, and revised in the field.

The result of the theodolite traverse over 398 linear miles, executed during season 191415, was plotted on the existing 4 -inch maps of the Ramnagar Forest Division, and the supplementary information for which the forest officials had asked was surveyed on the sheets concerned.

The 4-inch work in sheets Nos. $53 \frac{0}{2,8 d 7}$ is a special survey of the Kosī Forest Range, and a part of the China Forest Range. The work in shects Nos. $53 \frac{0}{10 \& 11}$ falls in part of the Mukteswar reserved forest and was specially asked for by the Imperial Bacteriologist.

To meet the requirements of the Forest Department the reserved forests within sheets Nos. $53 \frac{\mathrm{~K}}{\overline{\mathrm{~B}, \mathrm{~B}, 13 \& 14} \text { were surveyed on the } 2 \text {-inch scale. At the commencement of operations each }}$ surveyor was given two boards, the forest areas being surveyed on the 2 -inch scale, and the intervening spaces on the l-inch, but the constant break of scale proved troublesome, and, as there was no appreciable saving in time, it was decided later, to survey wholly on the 2 -inch scale all future boards which contained a fair amount of reserved forest areas within their limits. As the Forest Department have specially asked for the intervening areas, the survey of these, on the 2 -inch scale, seems justified.

The outturn of the party is as follows:-

(a) Revision survey				h		2152	are
(b) Original	"	"		ches	"	391	,
(c)	"	",	4	"	"	50	,
(d) Supplementary	"		4	"	"	49.5	"

The cost-rate of (a) is Rs. $16 \cdot 8$ per square mile.

$$
\begin{array}{llllrll}
, " & " & (b) & " & 19 \cdot 5 & , & " \\
" & " & (c) & " & 154 \cdot 2 & " & " \\
" & " & (d) & " & 8 \cdot 4 & " & "
\end{array}
$$

Triangulation.-The area triangulated embraces parts of the following sheets, viz:sheets Nos. $53 \frac{\mathrm{~K}}{5 \mathrm{k} 19}$ and $53 \frac{0}{6,7,10,11,12 \& 15}$. Mr. E. J. Biggie worked in sheets Nos. $53 \frac{\mathrm{~K}}{5419}$, and Mr. A. M. Talati in sheets Nos. $53 \frac{0}{6,7,10,11,12 \& 15}$. The total area triangulated amounts to 745 square miles; of this, 200 square miles are for future special forest surveys on the tinch scale, and 485 s square miles for 1 -inch work. Of the latter area, 149 square miles triangulated by Mr. Biggie, came under survey during the season under report, the computations being done in the field.

The cost-rate of the triangulation for 1 -inch survey is Rs. $6 \cdot 4$ per square mile.

$$
" \quad " \quad \text { t-inch } \quad, \quad, 28 \cdot 3 \quad,
$$

Traversing.-The area traversed embraces parts of the following sheets, viz:- sheets Nos. $53 \frac{0}{6,7,8,10,11 \& 1 \overline{2}}$. The control of the traverse camp remained under the officer in charge of the party.

The total number of linear miles traversed is 966 . Of this 512 linear miles are for special 4 -inch forest survey, and $45 t$ linear miles for l-inch topographical survey.

The cost-rate of the traversing for l-inch survey is Rs. $16 \cdot 7$ per linear mile.

Recess Duties.- (a) During the recess the party undertook the fair drawing of 14 sheets on various scales. Mr. E. J. Biggie supervised the drawing of the following 8 sheets, viz:- sheet No.
 $53 \frac{\mathrm{~K}}{13} \mathrm{~N} \& \mathrm{~S}$, and $53 \frac{\mathrm{~K}}{14} \mathrm{~N}$, for publication on the 2-inch scale. Mr. Moqimuddin commenced the fair drawing of the following 4 sheets, viz:-sheets Nos. $53 \frac{\mathrm{~K}}{4,8,12 \& 16}$. On his proceeding on privilege leave from 3lst July, Mr. G. E. R. Cooper took charge of the drawing of these sheets in addition to that of sheets Nos. $53 \frac{\mathrm{~K}}{16}$ and $53 \frac{\mathrm{~K}}{\mathrm{~N} . \mathrm{W}}$. Sheets Nos. $53 \frac{\mathrm{~S}}{4,8,12,16 \& 18}$ are for publication on the 1 -inch scale, and $53 \frac{\mathrm{~K}}{\mathrm{~N} . \mathrm{W} .}$ on the $\frac{1}{2}$-inch. None of these sheets were submitted for publication during the seasou under report. The following sheets have been completed and will be submitted for publication during October and November:-sheets Nos. $53 \frac{\mathrm{~K}}{4,8,12,16 \& 16}$,

A section is being left at Mussoorie to carry on the fair drawing of the undermentioned sheets during the winter, wiz:-sheets Nos. $53 \frac{\mathrm{~K}}{5} \mathrm{~N} \& \mathrm{~S}, 53 \underset{\operatorname{m}}{\frac{\mathrm{~K}}{\mathrm{\theta}}} \mathrm{~N} \& \mathrm{~S}, 53 \frac{\mathrm{~K}}{13} \mathrm{~N} \& \mathrm{~S}, 53 \frac{\mathrm{~K}}{14} \mathrm{~N}$, $53 \underset{\text { N.w. }}{\mathbf{K}}$ and $53 \frac{\mathrm{~K}}{\mathrm{~N} . \mathrm{E}^{-}}$. Sheets Nos. $53 \frac{\mathrm{~K}}{6 \& 10}$ will probably be drawn on the $1 \frac{1}{2}$-inch scale for publication on the scale 1 iuch $=1$ mile during the winter.

Owing to the lateness of the completion of field work, the 2 -inch mapping was not commenced till the end of July, and this accounts for the backward state of the sheets.

The cost-rate of $\frac{3}{4}$-inch mapping for $\frac{1}{2}$-inch publication is Rs. $2 \cdot 3$ per square mile.

$"$	1	-inch	$"$	l-inch	$"$	$"$	$8 \cdot 3$
$"$	$"$	2 -inch	$"$	$"$	2 -inch	$"$	$"$
$9 \cdot 1$	$"$						

(b) The computations of the following areas were completed:-
(1) 260 square miles of triangulation for 4 -inch survey
(2) 336
(3) 512 linear " of traversing for 4-inch survey
(4) $4 \overline{5} 4$ " " " , l-inch "
No triangulation charts have been drawn.
Miscellaneous.-(a) Surveyors, with previous experience of forest work, were selected to undertake the 4 -inch survey of the Naini lial forests, and it was expected that they would be able to turn out at least 4 square miles per month, but this hope was not realised, owing to the intricate nature of the ground over which the work was carviel out. The Government Notification supplied by the Forest Department, giving a description of the boundaries was found to be very incorrect, and at the request of the Conservator of l'orests (Kumaun Circle) who personally visited the area under survey, Mr. G. E. R. Cooper carried out the necessary corrections, while supervising the survey work.

When the survey of the forest areas is asked for by the Forest Department, enquiries shonld be marle, whether all lines have been cleared, and masonry boundary pillars erected. No survey work should be undertaken unless answers to these questions are in the affirmative. The preliminary work in connection with the forest surveys in district Naini Tāl was started by this party, under the belief that these two very important points had received due attention on the part of the Forest Department, but this did not prove to be the case; and the result has been that the traversers have had to do their own line clearing in places before they could proceed with their observations. There were instances too, where masonry pillars had not been built. These set-backs materially affected the progress of the work. In addition to the clearing of lines along the external limits of reserved forests, the clearing of lines of all notified exclusions should also be insisted upon.
(b) One soldier surveyor, one pupil surveyor, four pupil draftsmen and one pupil traverser received instructions in the field.

Inspections.-The ${ }^{1}$ arty was inspected during recess by the Superintendent, Northern Circle, and also by the Surveyor General.

No. 4 PARTY.

By H. W. Biggie.
The work of the party included resurvey and revision survey in the United Provinces,

Personnel.
Provincial Officers.
Mr. H. W. Miguie, in charge.
, H. P. D. Morton.
" J. C. C. Lears.
, Danı Chand Pnri.
Tpper Subordinate Service.
Mr. Mohammarl Itasain Klian.
, Danlat Kam Vohra (Prohationer) fiom 1at April 1916.

Lower Sulordinate Service.
28 Sarsegors, etc.
and a small isolated area of survey in Nepāl. The portion in the United Provinces lay in fairly open plains; while the isolated area lay in the Nepal tarai.

The two detachments of the party assembled at Fyzäbād on llth October 1915 for field work, which was closed on lst May 1916 the head-quarters of the party remained at Mussoorie throughout the year.

The health of the party was good, only one member having to go on combined leave for six months owing to ill health.

Topography.-The portion of country dealt with by the party in the United Provinces consists of Hat plains which are well cultivated. Orchards, containing mango trees, are numerous but there are no forests, though scrub growth occurs in some places. Village sites are numerous, and the density of the population is very high. The only river of importance which flows through the work is the Gogrā. The small area in Nepal State lies in the Nepāl tarai, along the border of the Bahraich district. This area consists of about two-fifths of fairly open plains, the remainder being low hills very densely clad on their lower slopes with forest and ander growth, the chief timber being sill (Shorea robusta). The upper slopes and summits
of the hills are covered in spear-grass. They are locally known as the Dundwa Range and are separated here from the main Himalayas by the valley of the Rāptī river, which, for a short distance, lies in the western area of the work.

Mr. Morton, with two surveyors to help him, took a personal share in, and was in charge of, the work in Nepàl State in which slıeet No. $63 \frac{\mathrm{E}}{13}$ was completed to margin. Mr. Muhammad Husain Khan's camp dealt with sheets Nos. $63 \frac{\mathrm{~J}}{12 \& 15}$ and $63 \frac{\mathrm{~N}}{3,4,7 \& 9}$, in the United Provinces. He had seven surveyors, strengthened in the middle of the field season by one more from Mussoorie. Towards the end of March Mr. Morton's camp completed its work, and he then took over the camp uuder Mr. Muhammad Husain Khan, who proceeded on privilege leave.

The following sheets were completed on the 1-inch scale:-survey, the Nepal portion of sheet No. $63 \frac{\mathrm{E}}{13}$; re-survey, sheets Nos. $63 \frac{\mathrm{~J}}{16}$ and $63 \frac{\mathrm{~N}}{3 \& 7}$; revision survey, sheets Nos. $63 \frac{\mathrm{~J}}{12}$ and $63 \frac{\mathrm{~N}}{4 \& 8}$. The areas completed under survey, re-survey and revision survey are 130,800 and 802 square miles respectively, making a total of 1732 square miles, the cost-rate of detail survey working out at Rs. $10 \cdot 0$ per square mile.

Triangulation.-The triangulation of the Nepal portion of sheet No. $63 \frac{\mathrm{E}}{13}$, amounting to 107 square miles, was carried out by Mr. E. J. Birgie. This area was subsequently surveyed in detail and is dealt with above. It lies at a distance of about 25 miles from the North-East Longitudinal Series of triangulation with which the new work was connected. A belt of dense sal forest lies between the old and the new work, and was the main difficulty in linking up.

The cost-rate is Rs. $65 \cdot 3$ per square mile. This high rate is due to the fact that, though area was taken credit for during the previous survey year, no cost was debited against it, nor cost-rate taken out.

Traversing.-No traversing was done by the party.
Recess duties.-(a) The supervision of the fair drawing, which continued at Mussoorie throughout the year, was divided up as follows:-Mr. Morton, current fair drawing of 1 -inch sheets Nos. $63 \frac{\mathrm{~N}}{3,4,7 \& 8}$ and the Nepàl portion of sheet No. $63 \frac{\mathrm{E}}{13}$; Mr. Lears, current fair drawing of l-inch sheets Nos. $63 \frac{J}{i 2 \& 15}$, $\frac{1}{2}$-inch sheets Nos. $34 \frac{\mathrm{~J}}{\mathrm{~N} . \mathrm{W} .}$ and $34 \frac{\mathrm{~J}}{\mathrm{~N} . \mathrm{E} .}$ and of 1 -inch sheets Nos. $63 \frac{\mathrm{~F}}{16}$ and $63 \frac{\mathrm{~J}}{8,10,11 \& 16}$, which had been left over from $1914-15 ;$ Mr. Duni Chand Puri, $\frac{1}{2}$-inch sheets Nos. $34 \frac{\mathrm{~J}}{\text { S.W. }}, 34 \frac{\mathrm{~J}}{\text { S.E. }}, 34 \frac{\mathrm{~K}}{\text { N. E. }}$ and $38 \frac{0}{\mathrm{~N} . \text { E. }}$ and 1 -inch sheets $63 \frac{\mathrm{~F}}{14 \pm 15}$ and $63 \frac{\mathrm{~J}}{2,3, \mathrm{e} \overline{\mathrm{a}} \overline{7}}$, left over from 1914-15.

The number of names in the l-inch sheets of the parts of the United Provinces which came under survey during the year is very great, and the typing of these sheets is therefore a tedious matter.

The following twelve l-inch sheets left over from $1914-15$ with a total area of 3201 square miles were submitted for publication to the head-quarters office during the year:sheets Nos. $63 \frac{\mathrm{~F}}{14,15 \& 18}$ and $63_{2,3,4,8,7,8,10,11 \& 18}$.

The fair drawing of the Nepal portion of l-inch sheet, No. $63 \frac{\mathrm{E}}{13}$, and $\frac{1}{2}$-inch sheets Nos. $34 \frac{\mathrm{~J}}{\mathrm{~N} . \mathrm{W} ., \text { N. E., }} \overline{\text { S. W.\&S.E. }}$, is practically complete.

The cost-rate for l-inch mapping is Rs. 2.2.1 per square mile, for $\frac{1}{2}$-inch mapping Rs. $2 \cdot 4$ per square mile and for compilation of village boundary editions $\operatorname{Re} .0 \cdot 8$ per square mile ; the average cost-rate for all being Rs. $3 \cdot 6$ per square mile.
(b) Other recess duties comprised the working ont of all the rectangular co-ordinates of trijunctions and points for field work in sheets Nos. $63 \frac{\mathrm{M}}{\mathrm{b}}$ and $63 \frac{\mathrm{~N}}{1,2,5 \overline{\mathrm{Bj}}}$, during season 1916-17, and the compilation and preparation by a small staff, of special editions of l-inch sheets showing village boundaries. The following fourteen sheets of the village boundary edition were submitted during the year:-sheets Nos. $54 \frac{\mathrm{M}}{15}, 54 \frac{\mathrm{~N}}{14}, 62 \frac{\mathrm{H}}{12}, 63 \frac{\mathrm{~A}}{182}, 63 \frac{\mathrm{R}}{2 \& 7}$ and $63 \underset{0,10,11,12,14,15 \overline{1} \overline{6} \overline{6}}{ }$. Wight more sheets are practically complete.

Miscel/aneous.-As an attempt to obviate the necessity for traversing for the purpose of providing additional points for detail survey, the fullest possible use was made of the old traverse records of the department; and the co-ordinates of all trijunctions and points occurving in those records were extracted. The success of the experiment was proved by the data thus obtained being found ample for the carrying out of detail survey, and no additional traversing was necessary during the field season. The same exhaustive means of providing a sufficiency of points have been adopted again this year for detail survey during the ensuing
field season, and the same successful results are anticipated. As a consequence of this, the services of the traversers and computers of the party were made available during the field season for work in other parties, where they could be more fully employed.

Inspections.-The Superintendent, Northern Circle inspected the recess work of the party in October and June. The Surveyor General accompanied by the Superintendent inspected the recess work of the party in September.

No. 20 PARTY (CANTONMENT).

By A. Ewing.
During the year under report, the party was employed on the survey of Peshanar,

> Pehsonnel.
> Procincial Officers.

Mr. A. Ewing, in churge.
" O. D. Juckeon, from 1st November 1915.
Upper Subordinate Service.
Mr. Dharmi.
Lover Subordinate Service.
23 sarveyory, etc. Rãwalpindi, Bakloh, Jullundur, Sanãwar, Simla (Native Infantry Lines), Kälka, Fort Lockhart, Hangu, Jhelum, Siālkot, Topa and Bannu cantonments on the scale 16 inches $=1$ mile; and on that of the bazars of Peshāwar, Rāwalpindi, Bakloh, Jullundur and Bannu on the scale 64 inches $=1$ mile. The triangulation and traversing of Rāwalpindi, Fort Lockhart, Hangu and Thal were completed during the year ; and Jhelum, Siallkot, Upper and Lower Topa, Chaman and Nimach have been traversed in advance for season 1916-17. Forty-two fair maps have been seut for publication, sixteen are in hand and fourteen remain to be drawn. These thirty fair maps will be sent for publication by May 1917, and the fair mapping of season 1916-17 will be commenced in March 1917.

The field season commenced in Peshāwar and Jullundur on 1st October 1915, and closed in Rāwalpindi, Topa, Jhelum aud Siilkot on 30th September 1916.

The health of the party was good during the year. Some of the surveyors and menials suffered from malarial fever in Ravalpindi during the months of July, August and September.

Topography.- As Mr. O. D. Jackson, on his transfer to this party, had no previous experience of cantonment survey, Mr. A. Ewing was in charge of the detail survey during the year; but was assisted by Mr. O. D. Jackson and Mr. Dharmu. They are now quite qualified to be placed in charge of sections, and will be employed on more responsible work during season 1916-17.

The accuracy of the work in Peshāwar, Ranwalpindi, Jullundur, Bakloh and Bannu was testel by Mr. A. Ewing by 30.21 linear miles of test lines. Mr. O. D. Jackson, Mr. Dharmu tested the cletail survey of Ràwalpindi and Bakloh, Jullundur, Sanāwar, Kälka, Fort Lockhart, Hangu, Thal and Bannu by 28.87 linear miles of test lines. The outturn of detail survey for the year under report is the same as that of last year's ; but there is an increase of 5,000 acres contoured during the present season.

The following table gives the outturn and cost of the survey of thirteen cantonments surveyed during the year:-

Scale.	Outturn	Cost
	Arres.	Rs.
16 inches $=1$ mile	18,958	26,703
$6 \pm \quad$ \% $=1$	34.3	3,238

Triangulation.-A sufficient number of stations and intersected points were fixed in Rawalpindi, Fort Lockhart, Hangu, Thal, Topa and Chaman for the connection of theodolite traversing. The triangulation of Bakloh had to be revised, as the mark-stones fixed by the triangulator in season $1894-95$ had been removed. Mr. O. D. Jackson, Mr. Dharmu, and survesors Gokul Chand and Niaz Ahmad Khan were employed on the triangulation. The cost of the triangulation done during the year is Rs. 2,071.

Traversing.-During the year the traversing of Rāwalpindi, Hangu, Fort Lockhart, Thal, Simla (Native Infantry Lines), Jhelum, Siälkot, Nimach, Chaman and Topa was completed. The traversing done by the members of the party is :-

Mr. O. D. Jackson			Stationo. 44	...	$\begin{gathered} \text { Linear miles. } \\ 6.98 \end{gathered}$
		...			
Mr. Dhar	mu ...	\cdots	108	...	7.75
Surveyor	Gokul Chand ...	\ldots	1868	...	$270 \cdot 60$
"	Niaz Ahmad Khan	...	658	\ldots	$68 \cdot 50$
$3 \text { others }$	Arthur Francis	...	502	...	$13 \cdot 80$
	survejors	237	...	$13 \cdot 62$
		Totals	$3+17$...	$381 \cdot 25$

The theodolite traversing done during the year is very good, both in angular observations and in chaining. The cost of traversing is Rs. 11,729.

About 100 miles of levelling were done in Jullundur, Bannu, Bakloh and Rāwalpindi at a cost of Rs. 3,227 .

Recess duties.-Forty-two sheets of fair maps have been sent to Dehra Dūn for publication. The fair drawing of Jullundur, Hangu, Thal, Fort Lockhart, Peshāwar and Bannu is in hand ; and the fair sheets of Bakloh and Rawalpindi are remaining to be drawn. The sheets that are in hand will be sent for publication by December, and the fair drawing of Bakloh and Rāwalpindi will be completed by May 1917. The fair drawing was done under the supervision of Mr. A. Ewing, who examined all the sheets before sending them for publication. The cost of the fair drawing for the year is Rs. 6,515 .

Programme for scason 1916-17.-The detail survey of Rawalpindi cantonment is to be completed and the entire detail survey of those of Jhelum, Sialkot, Topa, Drazinda, Jandola, Jatta, Zäm, Chiträl, Upper Drosh and Lower Drosh, is to be carried out. Nasïräbüd, Deoli and Jhánsi cantonments will be triangulated and traversed in advance for purposes of detail survey in 1917-18. As it will be impossible to predict what the political condition will be on the Frontice when the survey of Chitral, Upper Drosh, Lower Drosh, Drazinda, Jandola, Jatta and Zäm has to be done, there may be changes in the programme.

Inspections.-The party was inspected by the Superintendent Northern Circle in February 1916 at Rāwalpindi and Pesháwar.

RIVERAIN DETACHMENT.

By Rai Sailb Maya Das Piri.
The field operations in connection with riverain and other surveys for the Punjab Government were commenced on the 1 Sth October 1915, and were finally brought to a close

Personnel.
Provincial Officer.
Rai sabib Maya Das Puri, in charge.
Upper Subordinate Servicc.
Mr. Paras Rain.
" Laksbrui Datt Joshi, from the 20th October 1915.
" Vidya Dhar Chopra.
Lower Suhordinale Service.
74 Sarveyors, etc.
6 Naib T'ahsildars and Kanunges. ete.
Mr. Vidya Dhar Chopra, Sub-Assistant Superintendent, supervised 4 traversers, and was put on the riverain traverse on the Sutlej, and the Be is (districts Ambila and Kangra), the Indus main circuits, computations, and checking stores.

Munshi Ganda Singh, Näib T'chsildar, remained in charge of a field camp in districts Simla and Kingra; and assisted in computations, plottink, and vernacular correspondence, etc.

Surveyor Ishwar Singh continued to look after the Kangra field work, and the road survey ; and trained new hands.

The Riverain Surpeys.-The following tables (1), (2) and (3) give full detail of the riverain work completed during the year:-
(1) Oif-doon wolk.

Nampa of Rivfis. listricte and Scales.		Maincincuit.			Minor Tifaymese fon Detall Suryet.				Base Linfes.			Remaifs.
								荅				
Sullej Riwr. District Ambita, Schle $\frac{1}{2 \cdot 280} . \quad$ j	Nil	\ldots	\cdots	\ldots	$45 \cdot 0$	358	1880	71	\cdots		...	
Beris and Chalki Ricers. Districta Kinurn, Doshiairpur und Giltiliapur, $\text { scale } \frac{1}{23(0)}$ InIua Riner.	Nil	\cdots	65.0	398	2051 $+2: 39$	48	* ${ }_{\text {* }}$	54	100.0	* In additiou to these +9 tra. verse stations werc demarcated with perma. nent mark. stones.
$\left.\begin{array}{l}\text { K hinn and liahísalpur } \\ \text { State, } \\ \text { Scale } 220 \text { feet }=1 \text { inch }\end{array}\right\}$	52	459	155	255	\ldots	\ldots'	\ldots	\cdots	\cdots	+ These are intersected points.
Total	52	459	115	291	$100 \cdot 0$	751	4170	110	162	54	$100 \cdot 0$	

(2) Office work done for the cadastral sumveys of riverain estates.

Name of riser.	Name of district.	scale of masãvis	Number of plotted masāvis showing traveraed pointe.	Number of compiled masávir show. ing riveraiu boandaries.	Number of sheets truced for the use of Settlement Officers on scule 4 inches to a mile.	Number of 4 inch sheets on which new work was plotted.
Sutlej	Ambăla	$\frac{1}{2 i \overline{80}}$	302	89	5	5
Beās	Kanncra	$\frac{1}{2300}$	550	53	3	3
	Total	\ldots	85%	142	8	8

Besides these, 108 miscellaneous traces were prepared.
(3) Office work done for the 4 -inch compilation of riveraln boundaries.

In aldition to these, $50+\frac{m a s u ̈ c i s ~ o f ~}{} 106$ tikīs of distriits Kāngra and Hoshiārpur were reduced with a pentagraph to the scale tinches to a mile for the Beas compilation.

The Kinuru Special Surcey.-This survey was started on 18th October 1915 under the usual conditions in continuation of the last season's programme. 2162 linear and 300 square miles of the district area, were traversed, and triangulated; and 12067 stations were fixed with theodolite in .)7.5 tikes.s (sub villares). 1992 plotted masaeis of 260 tikies on the scale 20 karams (one karam $=57 \cdot 5$ inches) to an inch, 1520 masiatis of $5 l l$ tikes on the scale 40 karams to an inch, 30 mosinis of 21 likis on the scale 80 karams to an inch, and 17 traces on the scale 4 inches $=1$ mile were supplied to the Settlement Officer, Kangra. Besides these, 56 miscellaneous traces were prepared, and all the traverse stations marked during the year were plotted on $2 \approx$ four-inch sheets.

The work ras based on the triangulation done by the old No. 18 Party (Himalaya), and this necessitated the admission, in some cases, of heavier linear correction than 1 in 500 in closing the traverses. This work is practically finished. Only the computations of 414 points, the plotting of 230 tikirs, and the completion of the computation records remain to be done. This, it is hoped, will be finished early during next season. The riverain work done in the Kangra district on the Beās is given under head Riverain Surreys.

The simla Surrey.-This survey was commenced in the Kotgarh tract on the 2nd October, and was closed on the 30 th November $1915 . \quad 1066$ linear, and 15 square miles were traversel, and triangulated; and 11.93 stations were fixed with theodolite. 2.56 plotted masavis of 70 villares on the scale 40 karams (one karam $=54$ inches) to an inch and 2 four-inch sheets were tracel, and supplied to the Settlement Officer, Simla. Besides these 4 other miscellaneous shects were prepared, and all the traverse stations marked during the year were plottel on 1 four-inch sheet. The work is finished but the computation records have yet to be completed.

The Khaur Speci,l Survey.-At the special reguest of the Deputy Commissioner, Attock (Campbellpore), the Khaur special survey was taken up for the Attock Oil Company. Four
squares, joining one another, of one square mile each were demarcated with theodolite at certain bearings, and distances supplied by the company with reference to Khaur H.S. 45 linear miles were traversed and 173 stations laid out with theodolite. The area (4 square miles) was then plane-tabled on the scale 8 inches to a mile, showing detail. The hills were sketcherd, and no regular contours were shown. The map was then traced, fair drawn and supplied to the company within three months. The cost of this work was Rs. 1365, which was recovered from the Attock Oil Company.

The Kangra Road Survey.-This survey was carried out in continuation of the last year's programme, with the object of avoiding boundary discrepancies as compared with the Settlement maps. $41 \cdot 6$ miles of road, from mile No. 7 to mile No. $48 \cdot 6$, were surveyed. 556 points were fixed with theodolite, and 44 linear miles traversed. 63 sheets of the last year's work, and copies of the khasras (records of rights) were completed and supplied to the Executive Engineer, Provincial Division, Kàngra.

The traverse ficld books are the only records of this work which have been retained departmentally.

The work surveyed this year is being plotted, and the sheets will be supplied to the Executive Engineer during the coming season.

The Lahore Cantonment Survey. - With a view to test the area of grass land, the Lahore Cantonment boundary survey was undertaken at the request of the Cantonment Magistrate, Lahore. The work was based on the old No. 1 Party (Punjab)'s traverse values. In all, 22 linear miles, containing 70 theodolite stations, were traversed, in $\mathbf{1 4 7 2}$ acres; and the boundaries of 8 plots of 1190 acres surveyed. A trace of the map, on the scale of 12 inches to a mile, showing the boundaries, areas, etc., was supplied to the Cantonment Magistrate, Lahore.

The nature of country under survey.-The riverain part was in places sandy, marshy, broken, raviny, and was covered with shrubs, and high grass in the beds of the rivers. Portions above the high banks were well cultivated, and wooded. On the Indus they were flat; and on the Sutlej, and the Beas partly hilly, and partly open plain. The Kingra tract varied, it included the steep, and wooded hills on the north; and the undulating cultivated plains, with detached rocky outcrop, towards the south.

The Kotgarln (Simla district) area consisted of high densely forest-clad hills, mostly forest reserves, from 2000 to 8700 feet high above the sea level, the higher hills generally covered with snow during winter, and cultivated here and there.

The Khanr ground was in parts bare and hilly, and in parts cultivated.
The Lahore Cantonment land was open and flat, and well cultivated.
The health of the detachment was good throughout the year.
The Kangra aud the Simla district surveys, and the riverain traversing on the Sutlej and the Beais, were connected with Dinalädh H.S. XX, 'Tilhārà H. Staff, Bhulanä H. Staff, Darot h.s., Mainpur H. Staff, Thabkaur s., Paderoā h.s., and Tápa H. Staff, and 80 triangulated stations of the old No. 18 Party (Himãlaya).

The Indus main circuits were connected, and based on the values of Dago T.S. JIXXVI, Shāhpur T.S. LXXIII, Lanjiwàr T.S. LXXXI, Dāowālã T.S. LXII, Sarhin T.S. LXVIII, Kahirī T.S. LXXI, and Mirapur T.S. LXIX, of the Great Indus Series.

The average errors in the varions classes of work were as follows :-
(1) Riverain Surveys:-
(I) Base lines $1 \cdot 18$ feet per corner when compared with the theoretical values.

		Linear error in links per ten chains.
(b) Main circuits ...	$3 \cdot 17$	0-22
(a) Sub traverses	$7 \cdot 78$	$0 \cdot 70$
(2) Kingra traversing and triangulation	$9 \cdot 81$	$1 \cdot 06$
(3) Simla traversing and triangulation	$1 \cdot 61$	$0 \cdot 40$
(1) Khaur Special Survey ...	1.51	$0 \cdot 21$
(5) Kangra Road Survey ...	($\cdot \cdot 47$	$1 \cdot 42$
(i) Lahore Cantonment Survey	$8 \cdot 57$	$0 \cdot 90$

The total expenditure of the detachment from the lat October 1915 to 30th September 1916 whe Rs. 76,522 as detailed below :-

The cost-rates per square mile come to Rs. $146 \cdot 2$, and Rs. $209 \cdot 2$, for the Kängra District, and the Simla Survey respectively. They are slightly higher than those of previous season. In the case of the former this is due chiefly to the arrears of plotting and computations, and partly to the more rugged and difficult nature of the ground. In that of the latter, it is due to 80 stations per square mile having been fixed, as compared with 57 of the last year.

The detachment was inspected by the Superintendent, Northern Circle, on the 25 th and the 26 th February 1916.

SIMLA SUHVEY DETACHMENT.

By C. E. C. French.

Field work closed in Simla at the end of March 1916, when the detachment proceeded to Mussoorie to complete the fair drawing.

Prasofinet.

Provincial Officers.

Mr. C. R. C. French, in cbarge.

- F. C. Saint, from 27th October 1915 to 30th April 1916.

> Upper Sabordinate Service.

Mr. Imam Din.
n. J. P. Fastar (Probationer), from 29th October 1915 to 31et March 1916.

- Ghalam Hesan (Probatioder). Prom 29th October 1915 to 31at March 1916.
n A. A. 8. Matlub Abmed (Probationer), from 29h October 1915 to 31st March 1916.
n D. B. Fohra (Probatioder), from 29th October $191 E$ to 21st March 1916.

Lower Snbordinate Serrice.

9 Surrejors, of.

Field Operalions.-The topography of 1050 acres in Simla, on a scale of 125 feet to 1 inch, was completed at an aggregate cost of Rs. 16,638.

No triangulation or traversing was done during the year.

Recess Duties.-(a) 14 fair sheets, out of a total of 32 , have been despatched for publication. The remainder will be completed by the end of November 1916. These sheets have been drawn on a scale of 125 feet $=1$ inch for the production of two separate sets of maps on scales of 150 and 220 feet to 1 inch. The former to meet general requirements in connection with Colonisation and Improrement projects; the latter to form a combined map for purposes of illustrating Water-works, and Sewage Systems, in Simla. The aggregate cost of mapping is Rs. $\mathbf{7 4 5 6}$, or Rs. $2 \cdot 0$ per acre.
(b) A proposed survey of $5 \cdot 3$ equare miles (or 3392 acres) of country, illustrating a dispute between Patiàla and Koti States, was abandoned for reasons of expense; and, instead, s pentagraph enlargement from existing 2 -inch surveys was supplied to the Assistant Political Officer in January 1916.
(c) The large-scale data of the Simla Survey have been utilised in the preparation of a Guide map of Simla, to be published on the scale of 8 inches $=1$ mile. The commencement of the fair mapping is pending receipt of blue print reductions from Calcutta.

SOUTHERN CIRCLE.

(Vide Index Maps 2 and 5).
Summary.-This Circle was under the superintendence of Colonel T.F.B. Renny-Tailyour, C.S.I., R.E. throughout the year and consisted of Nos. 5, 6, 7 and 8 Parties, No. 4 Drawing Office and the Training Section.

During the year $\mathbf{1 7 , 2 4 3}$ square miles of detail sürvey and 31,680 square miles of triangulation have been completed.

The detailed survey consists of :-

9,886	square miles of $\frac{1}{2}$-inch survey.
6,488	$"$
715	$"$
30	$"$
124	l-inch survey.
124	$"$
	"inch supplementary survey.
$\frac{1}{2}$-inch survey.	

Owing to the shortage of supervising officers on account of the war, the detail survey was considerably curtailed. Nos. 6 and 7 Parties took the field with a full strength of surveyors but the majority, including the head-quarters, of Nos. 5 and 8 Parties remained at Bangalore throughout the year and were principally employed on the fair drawing of $\frac{1}{2}$-inch sheets compiled from 1 -inch sheets.

The Training Section carried out detail survey on the 2 -inch scale in sheet $57 \frac{9}{10}$. 19 pupil surveyors received instruction in topographical surveying.

Magnifying glasses, attached to stands, were obtained from the Mathematical Instrument Office and were usefully employed by some of the draftsmen in this Circle when fair drawing on blue prints, most draftsmen are able to draw under a magnifying glass without any previous practice. This method is particularly helpful to draftsmen whose sight is failing as well as in cases when the fair drawing is for the $\frac{1}{2}$-inch or $\frac{1}{4}$-inch scale on blue print reductions with intricate detail or contours.

The following work was undertaken in the Photo-Zinco Section of No. 4 Drawing Office :-

Reproductions 47
Enlargements 113
Reductions 123
Sheets vandyked 216
Copies printed 4,850

No. 5 PARTY (BERĀR, CENTRAL INDIA AND CENTRAL PROVINCES).

 By J. O' B. Donaghey.This party took the field in reduced strength and completed the detail survey on the

Prrsonnel.
Provincial Officers.
Mr. J. O' B. Donaghey, in charge.
" F. C. Pilcher.
Upper Subordinate Serrice.
Mr. Damodar Khadilkur.
Lower Subordinate Service.
19 Surveyors, etc.

2-inch scale of scattered reserved forest areas in sheets $55 \frac{\mathrm{C}}{8,8,10,11,12,13,14}$, and also carried out a 4 -inch plane-table skeleton boundary survey of the outer boundaries of the surveyed reserved forests. The party also completed the triangulation of sheets $55 \frac{\mathrm{~B}}{3,4,7,9,11,12,15,16}, 55 \frac{\mathrm{~F}}{5,4,6,7,10,11}$.

The areas surveyed consist of wooded hills and the country triangulated comprises forest-clad hills and undulating cultivated areas.

The field season opened on the 25th October 1915 and closed on the 26th April 1916. The head-quarters of the party remained at Bangalore throughout the year.

The health of the party was good. One surveyor died of fever during the recess season.
Topngraphy.-The areas surveyed comprise five scattered reserved forests consisting of hills with open forest.

Mr. Pilcher, before commencing his triangulation, attended to the preliminary field arrangements for the 2 -inch survey and the 4 -inch boundary survey, which were carried out by two surveyors under direct orders of the party head-quarters. No difficulty was experienced.

The total area surveyed on the 2 -inch scale was 64 square miles, the average monthly outturn per man was $6 \cdot 6$ square miles and the cost-rate per square mile was Rs. 43•0.

Triang"lation.-The nature of the country, which lies along both banks of the Narbada river, is hilly and undulating; all the hills and portions of the undulating country are forestclad interspersed with open undulating areas. $55 \frac{\mathrm{~F}}{6,7,11}$ and Mr. Damodar Khadilkur, who was instructed in triangulation by Mr. Pilcher
 and the northern half of sheet $55 \frac{\mathrm{~F}}{13}$ were reconnoitred by Mr. Pilcher, and it was found that the triangulation already existing in these areas will be sufficient for topographical purposes.

The total outturn was 3,853 square miles and the cost-rate per square mile was Rs. $3 \cdot 2$.
Reress Duties.-The majority of the party was employed throughont the year on fair drawing for $\frac{\mathrm{b}}{\mathrm{g}}$-inch sheets compiled from 1 -inch sheets.

The fair drawing was carried out by a drawing section which was supervised by Mr. Donaghey during the field season and was subsequently placed under Messrs. Pilcher and Damodar Khadilkur. 'The fair sheets are being drawn on $\frac{3}{3}$-inch blue print reductions, on drawing paper, of the component 1 -inch sheets. Sheets $55 \frac{\mathrm{~J}}{\text { N.E. }}, 55 \frac{\mathrm{M}}{\mathrm{S} \cdot \mathrm{E},}, 6 t \frac{\Lambda}{\text { N.W., S.E. }}$ have been completed and submitted for publication, sheets $54 \frac{\mathrm{~L}}{\mathrm{~S} . \mathrm{W},}, 54 \frac{\mathrm{P}}{\text { s.E.E }}, 55 \frac{\mathrm{l}}{\mathrm{S} . \mathrm{W}}, 64 \frac{\mathrm{~A}}{\text { N.E. }}$ are

The total area fair drawn is 8,725 square miles and the cost-rate per square mile is Rs. $1 \cdot 7$.

The computations of the triangulation were not completed owing to the reduction in the number of officers due to the war. In 1916-1i the party will take the field again in reluced strength, and the party staff left in recess quarters will complete all arrears of computations before the next recess season.

Triangulation charts $54 . \mathrm{L}$ and $55 . \mathrm{N}$ are being brought up to date, and $55 . \mathrm{G}$ is in hand.

No. 6 PARTY (BOMBAY AND HYDERABĀD).

By P. R. Anderson.

This party completed the detail survey on the 1 -inch scale of sheets $47 \frac{\mathrm{M}}{\mathrm{j}, 4,7, \mathrm{~s}}$

Personnel.

Imperial Officer.

Major L. C. Thuillier, I. A., in charge ap to 25th Mny 1916.

Pronincial Officers.
Mr. P. R. Anderson, from 1at to 25 th May 1916, and in charge from 26th May 1916.
, P. Kenneg.
, E. A. Meyer
Khan Bahadur Hnji Abdul Rahim.
Mr. F. B. Kitchen.
" Munahi Lal, B. A.
" M. S. Ganesn Aipar.
" J. C. St. C. Pollett.
" K. S. Gopalachari, B. A.
Upper Sulordinate Service.
Mr. Fknath Battin.
" Ram Narayan Hastir.
" Nabidad. Ǩhan, from 13th October 1015.
", Manud Khan, promoted from let July 1916.
Lover Subardinate Service.
41 Surteyors, etc. and on the $\frac{1}{2}$-inch scale of sheets $47 \frac{\mathrm{~N}}{\mathrm{~N} . \mathrm{E} .}$, $56 \frac{B}{\text { N.W.W.,S.W., N.E., S.E. }}, 56 \frac{F}{\overline{\text { N.W., S.W.,N.E., S.E. }},}$, except that the areas of Bombay in sheets $47 \frac{\mathrm{~N}}{\mathrm{~B}, 10}, 56 \frac{\mathrm{~B}}{3,4}$ were surveyed on the 1 -inch scale and the areas of reserved forests in sheets $56 \frac{F}{1+, 15}$ were surveyed on the $1 \frac{1}{2}$-inch scale. The party also undertook the triangulation for the 1 -inch, $\frac{1}{2}$-inch and $1 \frac{1}{2}$-inch scales in sheets $56 \underset{140}{0}, 56 \frac{G}{1 \text { to } 10,12 \text { to } 18}$,

The general nature of the country is varied. It consists of rocky hills, and of well cultivated plains separated by flat-topped hills dotted over by scattered patches of jungle or by a series of disconnected rocky hillocks.

The field season opened on the 25th October 1015 and closed on the 22nd April 1916. The field head-quarters was at Ahmadnagar.

The health of the party was on the whole good. Two menials died.
Topography.-The country surveyed comprises the basins of the Godāvari and Mānjra rivers, a portion of the Bālaghant range of hills and the plateau enclosed by the range and its two spurs, the one forming the watershed between the Sina and Manjura and the other that between the Manjra and Gorlavari rivers. The basins of the Godavari and Manjra cover open, undulating and well cultivated country. The Bälaghñt is an intricate stony range of hills varying from 3 to 6 miles in width and running due east and west right through the northern portion of the work. The Bälaghat platean consists of narrow valleys separated by flat-topped hills, covered here and there by patches of jungle.

The work was divided among four camps as follows :-
No. 1 Camp.—Under Mr. Meyer assisted by a senior surveyor with Mr. Nabidad Khan and 10 junior surveyors carried out detail survey on the 1 -inch scale in sheets $4.7 \frac{\mathrm{M}}{\mathbf{9 , 4 , 7 , \mathbf { \theta } ^ { \prime }}}$, $56 \frac{\mathrm{~B}}{3,4}$ and on the $\frac{1}{2}$-inch scale in sheet $56 \frac{\pi}{\mathrm{~B}, \mathrm{~W}}$.

No. 2 Camp.-Under Mr. Haji Abdul Rahim with 6 surveyors, assisted towerds the end of the field season by surveyors from the other camps, carried out detail survey on the $\frac{1}{2}$-inch scale in sheets $56 \frac{\mathrm{~F}}{\mathrm{~N} . \mathrm{W} .(\text { E. hanl), S. W., N. E., B.E. }}$ and on the $1 \frac{1}{y}$-inch scale of reserved forest areas in sheets $56 \frac{\mathrm{~F}}{14,15}$.

No. 3 Camp.-Under Mr. Kitchen with 8 surveyors carried out detail survey on the 1 -inch scale in sheets $47 \frac{\mathrm{~N}}{\overline{0}, 10}$ and on the $\frac{1}{8}$-inch scale in sheets $47 \frac{\mathrm{~N}}{\mathrm{~N} . \mathrm{E}}, 56 \frac{\mathrm{~B}}{\mathrm{~N} \cdot \mathrm{~W}}$.

No. 4 Camp.-Under Mr. Munshi Lal with 6 surveyors carried out detail survey on the $\frac{1}{2}$-inch scale in sheets $56 \frac{B}{\text { N.E., S.E. }}, 56 \frac{F}{\text { N. W. (W. haiti }}$.

Two senior surveyors were also employed entering cultivation limits in sheets $56 \frac{\mathrm{~A}}{\text { N. E., S. E. }}, 56 \frac{\mathrm{E}}{\text { S. W., S. E. }}$, these limits were omitted, according to the rules then in force, when the detail survey on the $\frac{1}{2}$-inch scale in these sheets was undertaken.

As it was considered advisable to start all the junior surveyors, who were more or less still under instruction, on the 1 -inch rather than on the more difficult $\frac{1}{2}$-inch scale, they were employed, during the greater part of the field season, on the 1 -inch scale in No. 1 Camp under Mr. Meyer who was assisted by a senior surveyor as an assistant instructor. Towards the end of the field season the more promising surveyors were distributed among the other camps and employed on the $\frac{1}{2}$-inch scale. Not only did the country surveyed prove peculiarly fitted for training but it was found that the individual outturn and technical progress was very satisfactory, each man getting that help and instruction which it would have been impossible for him to get had he been attached to an ordinarily constituted camp and allowed to take his chance with the senior men.

A total area of 11,177 square miles was survered. The outturn of the $\frac{1}{2}$-inch, l-inch and $1 \frac{1}{2}$-inch surveys was $9,586,1,261$ and 30 square miles respectively, the average monthly outturn per man was $83 \cdot 5,23 \cdot 6$ and $8 \cdot 5$ square miles respectively and the cost-rate per square mile was Rs. $4 \cdot 5$, Rs. $10 \cdot 5$ and Rs. $66 \cdot 3$ respectively. The cost-rate of the $1 \frac{1}{2}$-inch survey being so exceptionally high is due to the fact that the areas of the reserved forests are small and scattered with intricate boundaries. Areas of 9,386 , 284 and 30 square miles of $\frac{1}{2}$-inch, 1 -inch and $1 \frac{1}{2}$-inch surveys respectively were in Hyderäbäd.

Triangulation.-The country triangulated consists, for the most part, of populous valleys separated by flat-topped hills and, except a small area in sheet $56 \frac{G}{10}$, was not densely wooded.

Mr. Kennegy completed an area of 1,700 square miles in sheets $56 \frac{1,2,3,5,6,7}{C}$, Mr. Ganesa Aiyar 3,691 square miles in sheets $56_{1,3,3,+, 5,6,7,8,12,18}, 56 \frac{4}{1,5,6}$, Mr. Pollett 2, 458 square miles in sheets $56 \underset{1,2,3, \overline{4}, \overline{6}, \overline{0}, 7,8,12}{\mathrm{~K}}, \mathrm{Mr}$. Gopalachari 1,106 square miles in sheets $56 \underset{\text { 日, 10, } 13,14,16}{G}$, Mr. Eknath Battu 2,079 square miles in sheets $56 \frac{\mathrm{~K}}{9,10,11,13,13,1+1,15,18}$ and Mr. Ram Narayan Hastir 2, 837 square miles in sheets $56 \frac{\mathrm{C}}{4,8,9,10,11,12,13,14,15,16}$.

The country on the whole was not difficult to triangulate, but considerable difficulty was experienced in selecting stations far enough apart, as the hills were of a uniform height.

The total outturn was 13,961 square miles and the cost-rate per square mile was Rs. $3 \cdot 7$. Areas of 12,707 and 200 square miles for the $\frac{1}{2}$-inch and $1 \frac{1}{2}$-inch scales respectively were in Hyderäbād.

Recess Duties.-The fair drawing was divided among four sections, as follows:-
No. 1 Section.—Under Mr. Meyer, l-inch sheets $47_{4,7,8}^{M}$ and $\frac{1}{2}$-inch sheets $47 \frac{\mathrm{~N}}{\mathrm{~N} . \mathrm{E} .}, 56 \frac{\mathrm{~B}}{\mathrm{~S} . \mathrm{E} .}$.
No. 2 Section.-Under Khan Bahadur Haji Abdul Rahim, $\frac{1}{2}$-inch shects $56 \frac{\text { F }}{\text { S. w., N. E., S. E. }}$.
No. 3 Scetion.—Under Mr. Kitchen, l-inch sheets $47 \frac{\mathrm{M}}{3}, 47 \frac{\mathrm{~N}}{0,10}, 56 \frac{\mathrm{~B}}{3_{1} 4}$ and $\frac{1}{2}$-inch sheets $56 \frac{\text { B. }}{\text { N.W., S.W. }}$.

No. 4 Section.-Under Mr. Munshi Lal, $\frac{1}{2}$-inch sheets $56 \frac{\mathrm{~B}}{\mathrm{~N} . \mathrm{E}}, 56 \frac{\mathrm{~F}}{\mathrm{~N} . \mathrm{w} .}$.
All the sheets were completed to margin with the exception of the l-inch sheets $47 \frac{\mathrm{~N}}{7,10}$, $56 \frac{B}{a, 4}$ which only contain the areas of Bombay falling in them. No. 4. Drawing Office lent some draftsmen to assist the work, and the fair drawing should be practically completed by the end of the recess season.

The total area of fair drawing was 11,317 square miles (10,054 square miles for the $\frac{1}{2}$-inch and $1,26.5$ square miles for the l-inch scale) and the cost-rate per square mile was Rs. $1 \cdot 8$. An area of 140 square miles was fair drawn for both the $\frac{1}{2}$-inch and 1 -inch scales. Areas of 9,943 and 257 square miles of fair drawing for the $\frac{1}{2}$-inch and 1 -inch scales respectively were in Hyderäbäd.

Computations sufficient for the work during the next field season were completed, and the balance will be completed during the field season.

Triangulation charts 47.M, 55.D, 56.A and 56.E are in hand.
Miscellaneous.-There are very few pukka roads in the Hyderäbäd State and the cart tracks are only fair weather roads, as the black cotton soil makes wheel traffic next to impossible, even after only a few showers. Besides this the cart owner is invariably a cultivator, who uses his cart merely as a means of gathering in his produce and getting it to market. He uses his plough or muat bullocks as draught animals and is naturally very reluctant to do without them during his busiest time. He will with persuasion carry things to the next village but no further. Under these circumstances it was found necessary to supply the camp officers and triangulators, who have long marches to make, with camel transport. The rate for camels in the Hyderābād State is prohibitive. It was therefore found expedient to get the party camels from the Central Provinces. Much difficulty is experienced with jagirs. These are more or less independent of the districts, to which they are assigned, and, without parmanas from their owners, it is impossible to get local assistance. There are very few British post offices in the State, and special arrangements have to be made for the distribution of money. The Nizám's railways conduct all transactions in halli sikka coin, and, as the exchange is always varying and the railway rate invariably differs from the market rate, there is some trouble in adjusting accounts. Game is very strictly preserved. Shooting in Hyderabad forests is entirely prohibited. Custom dues are leviel by the State, but exemption from these can be obtained by applying for it.

No. 7 PARTY (MADRAS).
 By W. M. Gorman.

The party completed the 1 -inch detail survey of sheets $57 \frac{0}{1,2,3,4,8,6,7,8,11,12,15,16}$,

Personnel.
Procincial Officers.
Mr. W. M. Gorman, in charge.
" S. F. Norman.
" F. B. Simons, from 30th June 1916.
" V. W. Morton.
" C. West.
, II. H. P. Butterficld.
" N. S. Earihara Ifer.
Upper Subordinate Service.
Khan Sahib Abdul Hakk.
Mr. Kodandera Mandana,
" P. 8. Venguspani.
" Bhib Lal.
" H. Narasimhamurti Rao.
-Shaikh Muhammad Salik, promoted from 1et July 1916.
"E. N. Natesan, B.A.
" Pulin Beliari Roy.
" Jitendra Mohan Mukerji.
Lower Subordinate Service.
40 Surpeyors, etc.
$57 \frac{\mathrm{P}}{9,10,19,14}, 66 \frac{\mathrm{C}}{3,4,7,8}, 66 \frac{\mathrm{D}}{1,2,9,4,5}$ with the exception of small areas of reserved forests and the district of Madras in sheets $57 \frac{0}{4,5,16}$ and $66 \frac{C}{8}$ respectively which were surveyed on the 2 -inch scale.

The Eastern Ghāts, a confused hill system with abrupt rises and falls and cultivated low expanses succeeding disjointed ranges in rhythmical order, formed the western limit of the work, these finally merge and are lost in one extensive cultivated plain to the sea coast, to start again further south at St. Thomas's Mount in detached small ridged or conical hills to be again lost in the low land. The fairly high hills of the Eastern Ghäts known locally in Cuddapah as the Palkondas are forest-clad and are mostly reserved forests, the Kārvetnagar or low hills in Chittoor district are more or less bare and rocky.

The party took the field on the lst November 1915, reached camp head-quarters at Arkonam on the same day, and returned to recess at Bangalore by the 30 th April 1916, with the exception of the triangulators and one surveyor doing the town of Madras, who reached on the 20th and 23rd June 1916 respectively. The north-east monsoon, which was generally a failure at its start, broke in earnest about the beginning of November and lasted practically throughout the month delaying progress of work consilerably.

The health of the party throughout was very good. First class surveyor Y. Narayanasvami Nayadu succumbed at Bangalore on the 14th March 1916, and surveyor Shankar Balaji Mandhre went on medical leave during the field season.

Topoyraphy.-The country surveyed stretches from the fairly high hills of the Eastern Ghäts on the west (locally known as the Pālkondas in Cuddapah and the Tirupati and Kärvetnagar hills in Chittoor district), in a succession of cultivated valleys and disjointed ranges further east which finally merge into the plains of Madras, to the sea coast. In the former, mostly covered with reserved forests, hill features are more regular and less confused
than in the latter, where continuity is lost in a succession of detached hill ranges, mostly devoid of forest growth except for a fringe of thorny growth, with low and undulating cultivated expanses in between, studded with numerous tanks and a large number of wells to supplement the former. The most conspicuous and notable of these detached hill ranges is the Nagari hills with high and precipitous cliffs standing boldly out above the plains as a landmark for miles around. On the summit of its highest point called Nagari Nose, 2,814 feet, lights were burnt in John Company's time to guide ships into the Madras harbour. The country further east and on to the sea coast extends in one unbroken plain, relieved by small ridged or conical hills starting at St. Thomas's Mount running south and forming a continuation of the Eastern Ghäts. The capital of the Madras Presidency and many big towns and other places of historical interest fall in the area. The country is well populated and highly cultivated. Palmyra groves and other trees are abundant and help to shelter many thriving villages. A feature of the sea coast is the heavy growth of casuarina. The Palar, Arni, Cooum (Kūvam), Adyar, Swarnamukhi Ponnaiyār and many other minor rivers augmented by innumerable tanks help to drain and irrigate the country.

The work was distributed as follows :-
No. 1 Camp.-Under Mr. Butterfield with an average of 5 surveyors completed an area of 790 square miles of 1 -inch survey, 652 square miles of 1 -inch supplementary survey and 2 square miles of 2 -inch survey of reserved forests in sheets $57 \frac{0}{1,2,3,5,6}$.

No. 2 Camp.-Under Mr. Norman assisted by surveyor Y. Narayanasvami Nayadu as an instructor with 11 surveyors and with the help of 2 surveyors from other camps surveyed an area of 1,388 square miles of 1 -inch survey, 49 square miles of 1 -inch supplementary survey and 10 square miles of 2 -inch survey of reserved forests in sheets $57 \frac{0}{4,7,8,11,12}$.

No. 3 Camp.-Under Mr. West with 9 surveyors surveyed an area of 1,253 square miles of 1 -inch survey, 1% square miles of 1-inch supplementary survey and 48 square miles of 2-inch survey of reserved forests and of the town of Madras in sheets $57 \frac{0}{[5,16}, 66 \frac{\mathrm{C}}{3,4,7,8}$.

No. 4 ('amp.—Under Mr. Abdul Hakk with 11 surveyors completed an area of 1,796 square miles of 1 -inch survey in sheets $57 \frac{\mathrm{P}}{9,10,13,14}, ~\left(66{ }_{1,2,3,3,4,5}\right.$.

The 2 -inch reserved forests surveyed consist of small scattered areas situated in low and rocky hills with a stunted growth of thorny shrub, grass and low bush. No difficulty was experienced in the survey and interpolation was possible throughout. The boundaries were checked with notifications and rough traces and maps supplied by the forest authorities during the time of survey. For the survey of the town of Madras a 2-inch blue print of the survey of the town as done by the Madras Revenue Survey was obtained and inked up in black and on measurement was found to be less than its denoted scale. Proper measurements were computed and a blue enlargement to the 2-inch seale on mill board was supplied by the Photo-Zinco Section, Southern Circle. On receipt, to enable plotting of traverse data utilised in the former survey, rectangular coordinates of graticule corners were computed in terms of the Madras Revenue Survey origin. The above data and a few trigonometrical points, supplemented by others by means of triangulation, helped the surveyor to begin and close his plane-table traverscs carried throughout the work. The work done by the Madras Revenue Survey proved generally useful, helpful and accurate. The area of the town or district of Madras is nearly 28 sfuare miles to complete which, surveyor C. Venkatasvami took 199 working days in a field season of 8 months and 3,650 traverse fixings.

The l-inch survey was considerably helped by l-inch prints of maps supplied by the Madras Revenue Survey. When these prints contained very little or no zamindari area in which detail given was meagre or none at all, dircet blue prints on mill and Bristol boards were obtained from the Ihoto-Zinco Scetion as well as from the Madras Revenue Survey Office, Madras. Prints cmbracing zamindari area were not availed of in the manner above noted but were transferred in blue by the surveyors as the work progressed but proved unceliable and of no value. The work of the Madras Revenue Survey proved again very accurate and helped considerably the progress of the party. In the coast sheets, where trigonometrical points were few and far betwen, trijunctions of the Madras Revenue Survey were utilised as starting and closing points of planc-table traverses. In the same sheets a difficulty about heights was experienced but was overcome by rumning a series of theodolite heights from G. T. Benchmarks outside the work and carried on further and throughout the work by a series of clinometrie heights.

The l-inch supplementary survey was olbtained from the existing t-inch published maps of reserved forsts, previonsly surveyed, by blue print reductions to the $1 \frac{1}{2}$-inch scale, on
which all detail was inked up in black and all symbols made to conform to the latest existing sheet of symbols and hill features indicated thereon. The prints on completion were pasted in position on a projected and plotted $1 \frac{1}{2}$-inch sheet by means of trigonometrical points common to both and the whole was reduced to the 1 -inch and printed on Bristol boards, ete. The work was supplemented where necessary and brought up to the standard of surveys and contoured by numerous heights and was found very correct. The country presented no difficulty in survey. Coolie transport, which had to be obtained from villages far clistant, retarded work to a certain extent and might have been worse had the Forest officials not helped to their utmost.

The full programme of the party, amounting to 6,002 square miles, was completed. The outturn of the l-inch survey, of the 1 -inch supplementary survey and of the 2 -inch survey was $5,2 \underset{\sim}{2} 7,715$ and 60 square miles respectively, the average monthly outturn per man was $31 \cdot S, 4 \cdot 1$ and $4 \cdot 9$ square miles respectively and the cost-rate per square mile was Rs. $8 \cdot 5$, Rs. $6 \cdot 5$ and Rs. $65 \cdot 8$ respectively.

Triangulation.-The triangulation completed embraces the eastern slopes of the Nallamalais in the north, the prominent hill ranges known as the Velikondas, mostly reserved forests with opeu jungle and extending over more than three quarter of the area in the west, together with minor disjointed hill ranges 5 to 6 miles in length, for the most part bare and rocky, the whole known as the Eastern Chats. The remaining part of the country to the east of the main hill ranges consists of flat and undulating ground with isolated rocky hills well distributed, standing out of the plains. The country is generally open and easy of survey except near amb along the sea coast where the ground is covered with palmyra and casuarina groves and other trees. Main roads and village cart tracks throughout the area are numerous. In the hills villages are few and a scarcity of water is felt from April onward to the break of the south-west monsoon.

Mr. Morton completed an area of 2,292 square miles in sheets $57 \frac{\mathrm{M}}{1,2,3,5,5,8,7,9}$, Mr. Harihara Iyer 1,596 square miles in sheets $57 \frac{\mathrm{M}}{9.10,11,13,14,15}, 57 \frac{\mathrm{~N}}{7}, 66 \frac{1}{3}$, Mr. Kodandera Mandanna 2,235 square miles in sheets $57 \frac{N}{1,2,3,4,5,6,7,8}, ~ M 1$. Shib Lal 2,283 square miles in sheets $57 \frac{\mathrm{~N}}{7,5,10,11,12,1+, 15,10}, 60 \frac{\mathrm{~B}}{2,3,4}$ aud surveyor Jagan Nath 1,335 square miles in sheets $57 \frac{\mathrm{M}}{\mathrm{in} .16}, 57 \frac{\mathrm{~N}}{\mathrm{~T}, \mathrm{0}, 13}, 66 \frac{\mathrm{~A}}{\mathrm{t}}, 66 \frac{\mathrm{R}}{1}$.
$\frac{1}{4}$-inch traverse charts, prepared by the Madras Revenue Survey for sheets 57.M, 57.N, $66 . A$ and $66 . \mathrm{B}$, were completed on receipt, by entry of rays of all geodetic work falling in them, as well as the entry by plotting and rays of all topographical forest triangulation affecting them. When complete they were sent to the Photo-Zinco Section and direct blue prints on Bristol boarts were supplied. The country triangulated had the principal and secondary series of the Madras Meridional and Coast Series, running through it, and on this the work was based. For the triangulation of the t-inch reserved forests, charts from the $\frac{1}{4}$-inch charts already mentioned, on which the forests had been roughly indicated, were enlarged by photography on Bristol boards, every advantage being taken so that existing G. T. Bases, etc., on which the work was to be based, should appear on them. The work was undertaken late in the field, after the completion of the original l-inch programme and was finished on the 20th June 1916.

The total outturn of triaggulation was $10,0+1$ square miles. 9,874 square miles, with a cost-rate of Rs. $3 \cdot \because$ per square mile, was for ordinary survey and 167 square miles, with a cost-rate of Rs. $29 \cdot 8$ per square mile, was for special forest survey on the 4 -inch scale. The high cost-rate of the latter is due to the fact that the areas are scattered and that there was delay in obtaining sanction for the commencement of the suecial forest survey.

Traversing. - As there was no opportunity to start the theodolite traversing of the bumulaties of the reserved forests for survey on the t-inch scale, owing to the lateness of the seasin and want of meu, it was held over, to be undertaken the first thing before the whole of the party left recess in 1916, when work in this line will be put in hand in order to have data realy for the special t-inch survey for season 1916-17.

Recess Duties.-The fair drawing of the survey completed was distributed as follows:-
No. 1 Section.-Under Mr. Norman, sheets $57 \frac{0}{4,7,8,11,12}$.
No. 2 Section.—Under Mr. West, sheets : $7 \frac{0}{15,16}, 66 \frac{\mathrm{C}}{3,4,7,8}$.
No. 3 Section.-Under Mr. Butterfield and, while he was on leave, under the: officer in clarge assisted by Mr. Shaikh Muhammad Salik, sheets $57 \frac{0}{1,2,3,5, \overline{5}}$.

No. \& Section.—Under Mr. Abdul Hakk, sheets $57 \frac{\mathrm{P}}{\mathbf{0 1 0 , 1 3 , 1 4}}, 66 \frac{\mathrm{D}}{1,2,3,6,5}$.
There are 2:3 sheets (excluding sheets $60 \frac{\mathrm{D}}{4,6}$ which are being drawn as outriggers to sheets $60 \frac{n}{3,1}$ respectively) for fair drawing, at the end of the year all of them were in hand and
fairly advanced, two have been completed and finally examined and two more are under final examination. The drawing is heavy and the typing severe, names in certain sheets average 25 letters, and the average number of names in a sheet is 400 . For the advancement shown in fair drawing, the members of the party deserve every credit and have worked hard. No. 4 Drawing Office lent some draftsmen to assist the fair drawing.

The total outturn of fair drawing is 6002 square miles and the cost-rate is Rs .3 .9 per square mile.

Every endeavour is being, made to complete the computations of the season's triangulation, and a satisfactory advance in this direction has been made, as all data for the 4 -inch reserved forests in sheets $57 \frac{N}{1,2,5,6,7,8}$ and the data for the coming field programme in sheets $57 \frac{N}{\theta, 10,11,12,13,14,15,10}, 66 \frac{B}{1,2,3,4}$ have been completed as well as the setting up and partial completion of the main triangles in the remainder of the work. Work in the above line left undone will be put in hand and completed by the party computers during the field season. Madras Revenue Survey trijunctions fixed by party triangulation in the coming season's programme have been computed and compared with values supplied by the Madras Revenue Survey from reductions of their rectangular coordinates to spherical and disclose an average difference of about 47 feet in Latitude and 75 feet in Longitude.

During the year the party has received several triangulation charts from the Superintendent of the Trigonometrical Survey, in addition to those in hand from last year. A start has been made in this line to see as many through but the section is small and as computations are heavy and pressing, it has only been found possible to complete two viz. 48.L and 57.L. The above section has been under Mr. Simons who, in addition, has the general supervision of the computation section assisted by Mr. Harihara Iyer.

A small section has been set apart to help in abstracting, copying and re-checking of trigonometrical clata of forest triangulation previously computed, and triangulation data of the past season completed and under completion both for the coming triangulation and detail survey. This section has also completed the projection and plotting, etc. of 1 -inch field traverse charts, the tracing of 4 -inch reserved forests' margins previously surveyed and adjoining the survey of forests to be surveyed on the same scale during the coming field season, and the plotting and general completion of blue print reproductions of sheets received from the Madras Revenue Survey, etc.

Miscellaneous.- With the exception of the fairly high hills where communications are few and villages far distant, the remainder of the country is well supplied with railways, roads and cart tracks, making access easy and quick. The Buckingham canal, linking up as it does the back waters of the Pulicat lake and Ennore, insures inland communications throughout a long stretch of country on the east coast.

The town of Madras and other fairly big towns and many places of historical interest fall in the area. The country is irrigated by innumerable artificial tanks and wells, and by many rivers, combining with natural fertility a deserving reward to the toil of the husbandman.

Work was considerably helped by the network of communications existing throughout the area and by the facility of procuring double bullock carts, which are plentifuland of good dimensions, on requisition. Jutkas or oue horse country passenger cabs ply for hire on nearly all main roads and at all railway stations. Coolies are difficult to obtain during the paddy season at inland villages, owing to the great request they are in by the villagers, to sow and reap the harvests of which three are gathered in between November and April. Numerous field distributaries, from all sources of water, help to irrigate the ground. This ground when uncler cultivation hampers the work as chaining can only be resorted to and the chain men find a difficulty in progression. The surveyor also has to meander to his forward station doing a distance out of proportion to what he would do otherwise, were the country dry and passable.

The greatest difficulty was experienced in the survey of the district of Madras where the surveyor had to find his opportunity for work during the hustle and traffic of a big city, in the lulls that supervened or by starting work in the early morning hours, when the turmoil of the day had not begun. Many delays were experienced, owing to owners of property not giving permission, althongh a credential, introducing the surveyor to private estate owners, from the Collector was forthcoming. The above however occurred rarely and generally the credential more than satisfied its object viz. the progress of work. Another letter for permission to enter and survey Fort St. George was procured from the military authorities and was of great help.

No. 8 PARTY (MADRAS).

By W. F. E. Adams.
The majority of the party remained in Bangalore throughout the year and commenced

Pbrigonnkl.

Provincial Oficers.
Mr. W. F. E. Adams, in charge.
, M. Mahadeva Madelier, M. A.
Upper Subordinate Service.
Rni Gahib Anantarao Dhondibe Mandhre. Mr. K. Narayanasvami Chetti.

Lomer Subordinate Service.
27 Surreyort, etc.
a programme of fair drawing for $\frac{1}{2}$-inch maps in addition to completing the arrears of fair drawing for l-inch maps. Triangulation was carried out in sheets $58 \frac{G}{11,12,15,10}, 58 \frac{\mathrm{H}}{11,12,14,15,16}$, $58 \frac{\mathrm{~K}}{3,4,7,8,11,12,15,18} ; 58 \frac{\mathrm{~L}}{1,2,3}, 58 \underset{3,7,8}{\frac{0}{3}}$.

The country triangulated was very flat.
The field season opened on the 30 th November 1915 and closed on the lst June 1916. The head-quarters of the party remained at Bangalore throughout the year.

The health of the party was good.
Topography.-No detail survey was undertaken by the party during the year under report.

Triangulation.-The country in sheets $58 \frac{\mathrm{G}}{11,12,15,16}$ was favourable for triangulation while that in degree sheets $58 . \mathrm{K}$ and $58 . \mathrm{L}$ was almost a dead flat with a slight slope of only a few feet per mile towards the sea. The country inland consists of black cotton soil, immediately succeeded by cleep sand near the coast. Owing to the black cotton soil, the country is almost impassable in wet weather. It is covered with dense groves of trees especially round villages, and intersected by a net-work of bunds, dykes, supply channels and tanks. The fields are filled with crops growing to a height of nearly 10 feet and most of the tank beds are overgrown with a dense thicket of thorns of a kind of hard and matted babul which is exceedingly difficult to clear. The coast country is covered with palmyra trees and thorn jungle and in places with cocoanut groves.

Mr. Mahadeva Mudaliar triangulated 2,234 square miles in sheets $58 \frac{\mathrm{G}}{15,16}$, $58 \underset{3,4,7,8,1,1,18, \overline{16}, 16}{ }, 58 \frac{0}{3,7,8} . \mathrm{Mr}$. Narayanasvami Chetti, a beginner in this class of work, was instructed by Mr. Mahadeva Mudaliar at the commencement of the field season for about a month, after which he started on his own and completed 1,591 square miles in sheets $5 S \frac{f}{11,13,15,16}, 58 \frac{\mathrm{H}}{11,12,16,15,10}, 58 \frac{\mathrm{~L}}{1,2,3}$.

The South-East Coast Series from Tuticorin to Rāmnād was a great help to the triangulator. In fact it was the Tower Stations of this series that made minor triangulation in degree sheet $58 . \mathrm{K}$ possible. Wooden scaffolding had to be built round these Tower Stations for observations, though it was with great difficulty that materials for it were procured from the neighbouring villages. It was again a laborious task to reclear the lines, now overgrown with trees, between stations which were mutually rendered visible in 1874-75. Many of the Great Trigonometrical Stations along the coast had disappeared owing to the sand-waves which travel from west-south-west to east-north-east, drifting the tops of sand ridges. In degree sheet 58.K triangulated this year, there were as many as 26 stations (minor) made on tops of houses, churches, tenples and forts.

The total area triangulated was 3,825 square miles and the cost-rate per square mile is Rs. $4 \cdot 4$.

Recess Duties.-Mr. Anantarao Dhondiba Mandhre was in charge of the fair drawing eection. During his absence on one month's privilege leave Mr. Narayanasvami Chetti eupervised the section.
l-inch sheets $58 \frac{\mathrm{D}}{0,14,16}, 58 \frac{\mathrm{G}}{7,8}, 58 \frac{\mathrm{II}}{1,2,3}$, arrears from the previous year, were completed and submitted for publication. $\frac{1}{2}$-inch sheets $49 \frac{\mathrm{~N}}{\mathrm{~N} . \mathrm{E}}, 58 \frac{\mathrm{C}}{\text { s.w. }}$ were completed and subinitted for publication, $38 \frac{\mathrm{~B}}{\text { N.E. }}, 58 \frac{\mathrm{C}}{\mathrm{N} . \mathrm{W} .}$ are practically completed and $48 \frac{\mathrm{~K}}{\text { N.E., S.E. }}, 48 \frac{\mathrm{~L}}{\frac{\mathrm{~L}}{\text { N.E., S.E. }}}$, $58 \frac{n}{\text { N.W., }} \frac{n}{\text { W., E.E. }}, 58 \frac{\text { C. }}{\text { N.E., S.E. }}$ are in hand.

The total area fair drawn for $\frac{1}{2}$-inch maps was 5,052 square miles and cost-rate per square mile is Rs. 4•1.

Mr. Maharleva Mudaliar was in charge of the computing section, and the computations of all the triangulation are expected to be completed by the end of November 1916.

Triangulation charts 58.C and 58.D will be completed on the new system by the end of December 1916.

EASTERN CIRCLE.

(Vide Index Maps 3 and 6).

Summary.-The Circle was under the superintendence of Lieutenant-Colonel R.T. Crichton, C. I. E., I. A. and comprised Nos. 9, 10, 11 and 12 Parties and No. 5 Drawing Office.

6931 square miles were surveyed during the year consisting of:-

300	square miles of	-inch sarvey.
50	do.	-inch reconnaigsanoe surveg.
5407	do.	1 -inch survey.
65	do.	1 -inch revision sarvey.
981	do.	2 -inch survey.
128	do.	4 -inch survey.

No detail survey was undertaken by No. 9 Party during the year under report. This party carried out a total of 682 linear miles of traversing over an area of 1504 square miles.

No. 9 PARTY (BENGAL).

By J. Smith.
With the exception of the traversing in advance for one-inch detail survey of sheets

Personnel.

Provincial Officers.
Mr. J. Smith, in charge.
, Dhani Ram Verma.
" E. M. Kenay.
, Amar Krishna Mitra, up to 31st March 1916 and from 6it July 1916.

Upper Subordinate Service.
Mr. Dalbir Rai.
. Ram Singb.
, Amulya Charan Ghosh (Probationer).
, Gopal Lal Mitra (Probationer).
Lower Subordinate Service.
26 Surveyors, etc.
$79 \frac{\mathrm{~A}}{4,8,11,12,15 \& 16}$ no field programme was allotted to this party which was consequently employed on half-inch mapping throughout the year. In January four surveyors, and in April one Provincial Officer, were transferred temporarily to No. 11 Party till close of its field season.

Traversing.-The area traversed comprised portions of the Burdwān, Hooghly, Nadiā and Jessore districts.

The section consisting of three surveyors and two pupils under Mr. Ram Singh commenced field work on the 25th October 1915, and closed on the 28th March 1916.

The officer in charge of the party inspected the section on the 20th and 21st December 1915, and again at the end of March to supervise the closing of the field season. 682 linear miles of traverse were run, fixing 2707 intersected points such as trees, temples, etc., over an area of 1504 square miles, at a total cost of Rs. 11,610 which works out to Rs. 17 per linear mile. The health of the section was on the whole good. One of the pupils had a bad attack of malaria which incapacitated him for work for a month, but besides this, no other protracted cases of illness occurrel. The country surveyed was absolutely flat, low-lying and cut up by numerous bils and rivers.

Recess duties.-Computations of the traversing done have been completed, the mean error in the chaining working out to $\cdot 9$ of a link per 1000 links, and in angular observation to 5 seconds per station.

Half-inch mapping.-15 sheets have been completed and despatched to the Circle office for submission for publication during the year, viz. $73 \frac{\mathrm{~B}}{\mathrm{~N} . \mathrm{E} .}, \frac{\mathrm{F} . \text { E., N. W., s.E., S. W. }}{}$; $78 \frac{N}{\text { N. E., S. E., N. W., G. W. }}, \frac{0}{\text { N.E., N. W., S. E. }}, \frac{P}{\text { N. W...S.W. }}$ and $\frac{P}{\text { B.E. }}$. This leaves one sheet of programme of $1914-15$ viz. $78 \frac{\mathrm{P}}{\mathrm{N} . E .}$ still in hand which is completed but not yet fully examined.

Of the 9 sheets allotted in programme of $1915-16 \mathrm{viz} .72 \frac{\mathrm{~L}}{\mathrm{~S} . \mathrm{W} .} ; 73 \frac{\mathrm{~B}}{\text { N.W. }} ; 78 \frac{0}{\mathrm{~S} . \mathrm{W}_{\mathbf{W}}}$; $83 \frac{\mathrm{D}}{\mathrm{N.W}, \text { N.E.E. }}, \frac{\mathrm{F}}{\text { N. W.,S. W. }} ; 84 \frac{\mathrm{~F}}{\mathrm{~N} . \mathrm{W} ., \text { S. W. }}$ all are nearing completion excepting $83 \frac{\mathrm{~F}}{\text { N. W. of which }}$ material has not been received. In addition to these sheets $94 \frac{\text { F. w., N. E., S. } \mathbf{w} \text {. }}{}$ have been put in hand.

Mr. Dhani Ram Verma supervised the mapping of sheets $72 \frac{\mathrm{~L}}{\mathrm{~S} . \mathrm{W} .} ; 73 \frac{\mathrm{~F}}{\mathrm{~N} . \mathrm{E}, \text { S.E. }}$; $78 \frac{0}{\text { N.E., S. W. }}, \overline{\text { N.E., S.E.E.S.W. }} ; 84 \frac{\mathrm{~K}}{\mathrm{~N} . \mathrm{W} .}$ and $94 \frac{\mathrm{~F}}{\mathrm{~S} . \mathrm{W} .}$.

Mr. E. M. Kenny supervised the mapping of sheets $73 \frac{B}{\text { N.E., N.w. }} ; 78 \frac{\mathrm{~N}}{\text { N. W., S. } \overline{\mathrm{W} .}}, \frac{0}{\mathrm{~N}_{1} \mathrm{w} .}$, $\frac{\text { P. W., S.E. }}{} ; 83 \frac{\text { D }}{\text { N.W., N.E. }}, \frac{\mathrm{F}}{\text { S. W. }}$ and $84 \cdot \frac{\mathrm{~K}}{\text { S. W. }}$.
 $\frac{0}{\text { S.E. }}$ and $\frac{\mathrm{P}}{\mathrm{N} . \mathrm{W}}$.

The cost-rate of the half-inch mapping in the report of last year was based on 10 completed sheets, but for this year only four completed sheets have been taken into calculation; consequently it is nearly double of what it was last year.

No. 10 PARTY (UPPER BURMA).

By Major E. T. Rich, R. E.

1. The recess office of the party closed in Maymyo on October 23rd 1915 and

Personnbl.
Imperial Officer.
Major E. T. Rich, R. F., in charge.
Provincial Officers.
Mr. W. G. Jarbo.
„ H. B. Bimons till 29th Jnae 1916.
"A. V. Dickson from 22nd May 1916.
, A. F. Murphy.
" D. N. Banerjee, L. C. E.
UFer Subordinate Service.
Klien Sahib Hayat Muhammad.
Mr. Maung Kyaw Nyein.
,1). N. Saha.
Rai Sabib Ram Prasad.
Lover Subordinate Service.
opened in Myitkyinā on October 26th 1915.

The office at Myitkyinã was closed on May 25th 1916 and the recess office was opened in Maymyo on May 29th 1916 where it remained for the rest of the year.

The health of the party was not good during the winter season, as there were numerous cases of malaria from which two khalasis died.
2. Topography.-Surveys were completed over an area of 2857 square miles in Upper and Lower Burma at a cost of Rs. $1,15,324$.

This area was surveyed as follows:2220 sq . miles of new 1 -inch survey.
222 do. 2-inch do.
300 do. $\frac{1}{2}$-inch do.
65 do. l-inch revision survey.
50 do. $\frac{1}{2}$-inch reconnaissance in unadministered territory.

Total 28.57 square miles.
The country surveyed in Upper Burma consisted of thickly wooded hills rising over 4000 feet above sea level and cut up by numerous low lying valleys.

In Lower Burma the country surveyed lay between the sea coast and the main range forming the western watershed of the Tenasserim river, together with a number of islands lying off the coast.

It varied from the steep densely wood hills along the Tenasserim watershed which were over 6000 feet high, practically uninhabited and with no communications, to the flat alluvial land covered with villages nearer the sea whilst the sea coast was everywhere fringed with mangrove swamps.

The party was divided into three survey camps under Major E. T. Rich, Messrs. W. G. Jarbo and H. B. Simons respectively.

Caimp No. I.-In charge of Major E. T. Rich, with one Upper Subordinate, Khan Sahib Hayat Muhammad and 2 surveyors completed an area of 311 square miles on the l-inch scale in parts of sheets $92 \frac{\mathrm{c}}{16}, \frac{a}{5,10}$ and 300 square miles on the $\frac{1}{2}$-inch scale with 50 equare miles of reconnaissance on the same scale in parts of sheets $92 \frac{\mathrm{~F}}{1,12,16,18}$.

Camp No. 2.-In charge of Mr. W. G. Jarbo assisted by one Provincial Officer, Mr. A. F. Murphy and one Upper Subordinate, Mr. Maung Kyaw Nyein in sub-charge of sections with one Provincial Otficer Mr. D. N. Banerjee and 15 surveyors plane-tabling completed an area of 7.57 square miles on the 1 -inch scale, 222 square miles on the 2 -inch scale and 6.) square miles of 1 -inch revision survey, in the Kathã, Upper Chindwin and Myitkyinā districts in sheets $92 \frac{\mathrm{C}}{3,4,8}$ and parts of sheets $92 \frac{\mathrm{D}}{\mathrm{G}}$ and $83 \frac{\mathrm{O}}{16}$.

Cump No. 3.-In charge of Mr. H. B. Simons with one Upper Subordinate, Mr. D. N. Saha aud 7 surveyors, completed an area of 1152 square miles on the l-inch scale in the Tavoy and Mergui districts in sheets $95 \frac{K}{4,7,8,11,19}, \frac{L}{1,5,9}$ and parts of $95 \frac{K}{15,10}, \frac{L}{13}$.

This camp was practically an independent charge as it was situated over 1000 miles from the party head-quarters in Myitkyina and Mr. Simons is to be commended for the good arrangements he made for transport and supplies.

Chatham Island (Port Blair) showing Astronomical h. s. fixed by Mr. Nicholson of the G. T. Survey in 1863.

The average cost-rates and outturns were as follows:-
Half-inch survey-
Cost-rate Rs. 8.6 per square mile.

One-inch survey-
Cost-rate Rs. 41-8 per square mile.
Outturn
$58 \cdot 6$ square miles per month.
$19 \cdot 9$ square miles per month.

Rs. 8.6 per square mile.

One-inch revision survey-

Cost-rate	Rs.	$7 \cdot 7$
per square mile.		
Outturn	$32 \cdot 9$	square miles per month.

Two-inch survey-
Cost-rate Rs. 90.5 per square mile.
Outturn $\quad 5 \cdot 8$ square miles per month.
3. Triangulation.-New triangulation was completed over an area of 2000 square miles at a cost of Rs. 12,358 including the computations.
(a) Rai Sahib Ram Prasad triangulated an area of 1850 square miles in sheets $92 \frac{\mathrm{~F}}{5,8,0,10,13,14}$ of the Putao district.
(b) Khan Sahib Hayat Muhammad triangulated an area of 150 square miles near Myitkyina whilst re-observing at four stations in order to refix the stone at a station which had been removed by some military signallers.

Great credit is due to the arrangements made by Mr. Ram Prasad who was working most of the winter in high snowy hills under great difficulties over 15 days march from his base in Myitkyinè. He made all his arrangements for transport and rationing his men himself and was away for 7 months without being visited by any officer of the party.

The country triangulated by both triangulators consisted of high thickly wooded hills and deep valleys sparsely inhabited.

The average cost-rate including computing is Rs. $6 \cdot 2$ per square mile.
4. Recess duties.-(a) The fair drawing was divided into two sections.

No. 1 Section.-In charge of Mr. W. G. Jarbo assisted by Mr. A. V. Dickson completed and sent for publication the 6 frontier sheets left unfinished last year, besides drawing sheets $92 \frac{\mathrm{C}}{3,4,8,26}$ and $92 \frac{\mathrm{D}}{5}$. None of these five sheets will be ready for publication before the party takes the field, owing to the time spent in completing the 6 frontier sheets.

No. 2 Section.-In charge of Mr. A. F. Murphy assisted by Messrs. D. N. Banerjee and D. N. Saha drew sheets $92 \frac{\mathrm{~K}}{4 \mathrm{nnil}, 7,11,12}, \frac{\mathrm{~L}}{\mathrm{~L}} \mathrm{Jid} \overline{5,9}$ all of which will be sent for publication before the party takes the field.

The cost-rate of fair drawing comes to Rs. $8 \cdot 5$ per square mile.
(b) All the computations of the triangulation done during the field season were completed during the recess in charge of Khan Sahib Hayat Muhammad assisted by Rai Sahib Ram Prasad with one computer.

The triangulation charts were also brought up to date.
(c) Mr. Maung Kyaw Nyein was employed instructing 9 newly enlisted pupils of Nos. 10 and 11 Parties in field work and fair drawing.
5. Outturn and Cost-rates.-The cost-rates shew an increase all round except for triangulation and one-inch revision survey which shew a decrease.

This increase of cost-rates is however rather misleading, as, talsen as a whole, the total cost of the party for the year shows an increase of only Rs. 17,339 or $12 \frac{1}{2}$ per cent. in excess of last year's cost, against an additional area of 739 square miles of survey equal to 25 per cent. in excess of last year's outturn, so that the cost-rates on the whole may be considered satisfactory.

The cost-rate for 1 -inch survey is increased by Rs. $8 \cdot 2$ per square mile, being Rs. $41 \cdot 8$ compared with $\mathrm{Ks} .33 \cdot 56$ last year, Rs. $22 \cdot 38$ in $1913-14$ and $23 \cdot 21$ in 1912-13.

For 2 -inch survey the cost-rate is increased by Rs. $6 \cdot 9$ per square mile, being Rs. $90 \cdot 5$ compared with Rs. $83 \cdot 60$ last year, Rs. $54 \cdot 51$ in 1913-14 and Rs. $57 \cdot 84$ in 1912-13.

For triangulation, the cost-rate is very satisfactory being reduced by Re. 0.9 per square mile. It is Rs. 6.2 compared with Rs. $7 \cdot 07$ last year, Rs. 8.41 in $1913-14$ and Rs. 13.52 in 1912-13.

For 1 -inch revision survey the cost-rate is reduced by Re. 0.5 being Rs. $7 \cdot 7$ compared with Rs. $8 \cdot 17$ last year.

For mapping the cost-rate is increased by Rs. 1.6 per square mile, being Rs. 8.5 compared with Rs. $6 \cdot 94$ last year, Rs. $7 \cdot 51$ in 1913-14 and Rs. $10 \cdot 91$ in 1912-13.

This increase in cost is due to the time taken over the arrears of heavy hill sheets along the Burma-China border.

No. 11 Party (LOWER BURMA).

By J. O. Greiff.

The original programme of the party consisted in the execution of the survey, on the 2 -inch scale, of 398 square miles of reserved forest

Pergonnel.

Proxincial Officers.
Mr. J. O. Greiff, in charge.
" O. J. H. Hart.
" C. O. Picard.
" A. J. Moore, from 11th October 1915 to 18 th March 1916.

Upper Subordinale Service.
Rai Bahadur Lacliman Daji Jadu. Mr. P. C. Sen Gupta, B. Sc. (Probaticner).

Loreer Subordinate Service.
28 Surveyors, etc. areas, in sheets $93 \frac{\mathrm{H}}{\theta_{1} 12}, 93 \frac{\mathrm{C}}{5,0,10,13,14}$, a special survey on the 4 -inch scale, of 126 square miles of reserved forests in sheets $93 \frac{\mathrm{~B}}{12}, 93 \frac{\mathrm{C}}{5,9}$ in the districts of Mandalay and Kyaukse, Upper Burma, and in the continuation of the $\frac{1}{2}$-inch and $\frac{1}{4}$-inch mapping in recess quarters, during the field season, by the Maymyo Drawing Office.

For field operations two camps were originally formed, comprising two officers and seventeen surveyors.

The field camps left Maymyo on the lst November and started work by the 10 th November.
Towards the end of December, an urgent request was received from the Burma Government, for the survey, on the 1 -inch scale of sheets $95 \frac{\mathrm{~F}}{13}, 95 \frac{\mathrm{~J}}{\mathrm{G}}, 95 \frac{\mathrm{~L}}{10,11,14,15,16}$, and $95 \frac{\mathbf{P}}{3,4}$ maps of which were urgently needed, in connection with the Wolfram Mining Industry, in the districts of Tavoy and Mergui. Owing to the very important nature of the request the party was directed to immediately arrange to undertake the survey of these sheets. The Superintendent of the Circle personally discussed and arranged, with the executive officer, the principal details.

The new programme of work necessitated curtailing forest surveys round Maymyo, and re-distributing the personnel of the party. It was decided to survey only the forest areas required to complete 1 -inch sheets $93 \frac{B}{8,12}, 93 \frac{C}{\delta, 9}$ to margins, and to utilise the surveyors so set free, with three from the drawing office, and eight others transferred from Nos. 9 and 12 Parties, to form two field camps, under Messrs. Picard and Lachman Daji Jadu, for work in Mergui and Tavoy.

The two additional camps arrived in Tavoy and Mergui, by the beginning of February. After making necessary arrangements for supplies, interpreters, boats etc., each surveyor was sent out to his particular bit of work. Owing to the lack of communications and long distances to be travelled in country boats, work was not actually started till about the 15th February.

The country surveyed in Upper Burma varied in elevation from 2.50 feet to over 4500 feet in the hills and was densely wooded with a heavy undergrowth of grass jungle. The river Nam Tu which is the boundary between the Baw and Yeyaman reserved forests, situated respectively in the districts of Mandalay and Kyaukse presentel a formidable barrier to through communication, and to the survey of the hills along its flanks. The river in this part of its course is more of the nature of a mountain torrent, confined between high hills, which rise almost sheer and precipitous from the river bed. To survey these details frequent crossings of the river were necessary, a tedious operation on small bamboo rafts.

In Tavoy the hilly seaboard area in the extreme north-west of the district, north of the Heinze bay, and the upper reaches of the Tavoy river (Kaleinaung Claung) were surveyel. In sheet $95 \frac{J}{6}$, the main watershed, which is the alministrative boundary between Burma and Siam, was found to be very much out in the old reconnaissance maps.

In Mergui the lower portions of the watershed between the seaboard and the Tenasserim valley, and part of the valley itself were surveyed. The country thronghout was hilly, rising to an elevation of 2500 feet, clothed with huge trees, below which was a tangled undergrowth of bamboo, cane and other creepers. For plane-table fixings almost every hill
top had to be cleared. The ground in these dense forests is covered with heary decayed vegetation, which makes the air within noisome. The country along the sea littoral is cut up by numerous tidal creeks fringed with dense mangrove swamps.

Owing to the existence of numerous waterways the district is practically devoid of roads and paths. For marches into the interior paths had to be cut and cleared. Except along the banks of the Tenasserim river the country is very sparsely populated, and east of the river is uninhabited for miles.

The country has a heavy rain fall, due to its proximity to the sea. From about the end of April rain was almost continuous. Constant rain, dense forest, swamp vegetation, leeches and other insect pests, precarious means of communication and supplies, rendered progress slow and difficult. All main detail was surveyed by means of plane-table traverses.

The Wolfram Mining Industry is for the present confined chiefly to the hilly area north of the village of Tenasserim. These are the foot hills of the range, that trends south through Tavoy and Mergui, and in this locality breaks up into a jumble of low hills, circled by the Tenasserim river, which due south assumes a westerly course, and then doubles back upon itself.

All supplies had to be arranged for from Mergui. Two depots were established from which the detached camps were supplied.

The question of transport was a matter of great difficulty. Mules were imported from as far away as Myitkyinā. The cost of their freight was a very heavy item of expenditure.

Through the Burma Government a motor launch was placed at the disposal of the party. The launch before being despatched from Rangoon was not overhauled, the consequence being that she was practically hors de combat from the day she was landed at Mergui.

The Tenasserim is a dangerous river to navigate owing to its being full of 'snags'. In the annual report for season 1591-92 it is stated, that the river is navigable by steam launch as far as Tenasserim only, thence country boats up as far as Tarabwin, after which only canoes can proceed. If this is correct, it is perhaps interesting to note the great change that has taken place in the deep channel of the river, for motor launches of over two feet draft, now go up as far as Tagu, three miles below Tarabwin, thence country boats as far as Pawut, thirty miles up, after which canoes or dugouts are used, owing to numerous rapids further ahead.

The field season opened on the 1st November 1915, and closed in Mergui on the 24th June 1916. Seven surveyors were kept out till about the middle of July, to complete sheets $95 \frac{\mathrm{~L}}{14}$ and $95 \frac{\mathrm{P}}{3}$. The head-quarters of the party remained at Maymyo.

The old l-inch maps prepared from surveys done between 1889-1893 were found to be very incorrect.

Topography.-The party was divided into three survey camps as follows:-
No. 1 Camp.- Mr. A. J. Moore in charge, and eleven surveyors, completed the survey of 285 and 128 square miles of reserved forest areas, on the 2 -inch and 4 -inch scales respectively, in sheets $93 \frac{\mathrm{~B}}{\mathrm{~B}, 12}, 93 \frac{\mathrm{C}}{\mathrm{B}, 0,10,13,14}$.

Mr. Moore received a commission in the Indian Army Reserve of Officers from the 19th Mareh, when the section was taken over by Mr. A. K. Mitra, transferred temporarily from No. 9 Party.

No. 2 Camp. Mr . C. O. Picard in charge, with Mr. Sen Gupta and 12 surveyors, completed the survey on the 1 -inch scale of 1026 square miles in sheets $95 \frac{\mathrm{C}}{10.16,16,16}, 95 \frac{\mathrm{P}}{2,3,4}$. To the latter part of the season six alditional surveyors were transferred to the section, to help to complete the survey of the mining areas and sheets $95 \frac{\mathrm{~L}}{14}$, and $95 \overline{5}$.

No. 3 Camp.--Thai Bahadur Lachman Daji Jadu in charge, and six surveyors, completed the survey of 280 s suare miles, on the 1 -inch scale, in sheets $95 \frac{\mathrm{~F}}{13}$ and $95 \frac{\mathrm{~J}}{6}$.

In addition 70 square miles in sheets $93 \frac{\mathrm{~h}}{6,7,10,11}$ were surveyed, on the 1 -inch scale, for the General Staff, Burma Division, for the preparation of the Artillery Practice Camp Map. The enlarged map, scale 3 inches $=1$ mile, was produced clirect from the field original, and was very satisfactory.

The cost-rate per square mile for each class of work is as follows :-
l-inch detail survey Rs. 50.7, 2-inch Rs. 78.4, 4-inch Rs. 142.9. The rates are high owing to the heavy cost of transport, and high rates for local labour.

Triangulation.-Sheets $95 \frac{\mathrm{~L}}{16}$ and $95 \frac{\mathrm{P}}{6}$, in the Mergui district were triangulated by surveyor Muhammad Yusuf Khan. The triangulation was an extension south from that done in season 1913-14. The country was similar to that topographically surveyed. The area was 580 square miles, and the cost-rate Rs. 4.5 per square mile.

Recess duties.-The fair drawing for the season was divided between the Maymyo Drawing Office, and a section under Mr. Lachman Daji Jadu.

Maymyo Drawing Office. - Was under the charge of Mr. Hart throughout the year, and the outturn of fair drawing done is very creditable. Seven $\frac{1}{8}$-inch sheets $84 \frac{1}{\text { N.E., B.W., S.E.? }}$; $92 \frac{\mathrm{G}}{\text { s.W. }}, \frac{\mathrm{L}}{\text { S.W., S.E. }} ; 93 \frac{1}{\text { N.E. }}$ amounting to 7,614 square miles, and 3,780 square miles in degree sheets $84 . \mathrm{N}, 93 . \mathrm{E}, 93 . \mathrm{I}$, were completed. The cost-rates for these are respectively Rs. $1 \cdot 4$ and Rs. $1 \cdot l$ per square mile. Ooly the final examination of these sheets remains to be completed. It is hoped to be able to send these sheets for publication, during the next field season.

The drawing office has also taken up the fair drawing of 1 -inch sheets $93 \frac{\mathrm{~B}}{\mathbf{\theta}, 1 \mathrm{I}}, 9.3 \frac{\mathrm{C}}{6,9}$, $95 \frac{\mathrm{~L}}{14}, 95 \frac{\mathrm{P}}{3}$, of which 620 square miles have been completed.

The mapping section under Mr. Lachman Daji Jadu completed the fair drawing of 195 square miles, in sheets $95 \frac{\mathrm{~F}}{13}, 95 \frac{\mathrm{~J}}{6}, 95 \frac{\mathrm{~L}}{10}$.

Owing to the prolonged field season, it has not been possible to complete the fair drawing of the l-inch sheets during the recess season. The arrears of fair drawing will be completed by the drawing office, and the sheets sent for publication during the vext field season.

During the recess season, four 1 -inch plans of the Wolfram mining areas in Mergui, were prepared for the local authorities. The 1 -inch plans were enlarged by photography to the scale 4 inches $=1$ mile, and blue prints on the enlarged scale supplied to the Deputy Commissioner. These are to be utilised as the basis of a rigorous 4 -inch survey, done on the ground, of each concessionnaire's property, and will be the legally recognised plan of each concession.

The cost-rate per square mile for fair drawing is Rs. 8.6.
Twenty-nine forest boundary plots, on the scale of 4 -inch equal to 1 mile, were prepared during recess for the Forest Department.

No. 12 PARTY (ASSAM).
By Lieutenant-Colonel A. Mears, I.A.
The previous season's operations were continued eastward along both banks of the

Presonnel.
Imperial Officer.
Lieut.-Colonel A. Meare. I.A.
Procincial Officers.
Rai Sahib Pramadaranjan Rny.
Mr. B.C. Newland.
, P. C. Mitra. B.A.
, H. H. Creed.
Cepper Strbordinate Service.
Mr. G. S. Bagrhi (Probationer).
Lower Suhordinate Service.
42 Surveyore, etc.

Brahmaputa river and comprised sheets $83 \frac{\mathrm{~F}}{\mathbf{1 3 , 1 6}}$, $8: 3 \frac{\mathrm{G}}{13}$ and $83 \frac{\mathrm{~J}}{\sqrt{1,2,3,5,8, \theta}}$. The programme was mainly carried out on the l-inch scale but included the Nämbar, Diphu, Rengmä, Dayāng, Käkadanga, Disai Valley, Disai and Holongāpār reserved forests totalling an area of 472 s , uare miles surveyed on the 2 -inch scale.

With the exception of about 250 square miles in sheets $83 \frac{\mathrm{~J}}{3, \mathrm{e}}$, where an elevation of some 4000 feet is attained, the whole of the country under survey is practically flat. From the foot of the Ning \bar{a} Hills, except where these adjoin reserved forests, to the south bank of the Brahmaputra river the country is almost entirely under rice and tea cultivation, the area being one of the most important tea growing centres in the valley of the Brahmaputra.

The field season started about the middle of November and closed at the commencement of May by which date the weather had become very unsettled for plane-tabling; the traverse section remained in the field till nearly the end of that month. The health of the party was remarkably good considering the unhealthy nature of the Nämbar and other reserved foresta under surrey, this may be chiefly ascribed to the regular issue of quinine and to the khalasis being supplied with thick linen socks as a protection from leech bites which otherwise are liable to turn into bad ulcers. One surveyor was invalided during the field season and five thalasio died.

Topography.-The party was divided into 4 camps for the execution of the detail survey programme.

Camp No. 1.-Under Rai Sahib Pramadaranjan Ray, with one Sub-Assistant Superintendent and 9 surveyors completed the survey of one sheet on the 2 -inch scale after which ho supervised the training section which surveyed 1 sheet on the 1 -inch scale.

Camp No. 2.-Under Mr. Newland with a strength of 8 to 10 survejors surveyed $3 \frac{1}{2}$ sheets on the 1 -inch scale.

Camp No. 3.-Under Mr. P. C. Mitra with 9 to 12 surveyors completed two sheets on the 1 -inch and 2 -inch scales.

Camp No. 4.-Under Mr. H. H. Creed with the assistance of 2 surveyors surveyed 1 sheet.

Of the country under survey close on 750 square miles was covered with the densest of jungle which owing to the scarcity of villages and local labour necessitated surveyors' squads being increased to 12 khalasis; even with this number of men the progress was slow on account of the large areas of cane brake and evergreen jungle met with. Some difficulty was experienced in rationing surveyors and their squads in parts of the area which would have been considerably increased had not the Assam-Bengal railway traversed a portion of the Nambar forest. Except for the railway and one or two roads and paths, surveyors had to make their own communications and elephant transport was confined to the few existing paths owing to the heavy clearing needed when these were abandoned.

The plains adjoining the Brahmaputra river call for no particular mention resembling in most respects the country described in previous reports. An area of some interest is the Majjuli islaud situated between the Brahmaputra and Luhit rivers containing some of the most noted Sattras or religious colleges of Assam.

The sites of the ancient Kachāri cities Dimāpur and Kàsomāri fall in the area of operations as also that of Rangpur, the capital of the Ahom kings, the ruins of which lie about 2 miles south of Sibsãgar. The remains of the Kachanri cities are almost entirely buried in the dense jungle of the Diphu and Dayāng reserves; those of Rangpur are in better preservation and comprise many fine tanks and the ruins of temples and palaces. Descriptions of these interesting remains are to be found in the reports of the Archæological Survey.

The cost-rate for l-inch survey for the season is practically identical with that of the previous year and may be considered favourable. The slight increase in the cost of the 2 -inch survey is attributable to smaller individual outturns owing to the extremely dense nature of the forest growth and the necessity for the employment of larger squads of Hazäribāgh khalasis due to local labour being unobtainable.

Triangulation.-No triangulation was carried out by the party during the season under report.

Traversing.-Advance traversing was extended north and eastward into sheets $83 \frac{\mathrm{I}}{\mathrm{\theta}, 11,12,14,15,16}, \frac{\mathrm{~J}}{13}, \frac{\mathrm{M}}{2,3,4}, \frac{\mathrm{~N}}{\mathrm{I}}$ over an area of some 1850 square miles for detail survey on the l-inch scale. Selected stations such as bench-marks, bridges, mile and revenue stones to the number of 394 were permanently marked, in addition 809 zinc cylinders were embedded.

The country traversed was flat and of a similar nature to that under detail survey. The traverse survey cost-rate is slightly less than that for the previous year, this is mainly due to there having been no Provincial Officer in charge of the work; the rate may be taken as a favourable one for the uature of the country under traverse.

Recess duties.-The fair drawing of the season's outturn, comprising 8 one-inch sheets, has been carried out by 3 drawing sectious under the supervision of Messrs. P. Ray (3 sheets), B. C. Newland (3 sheets) and P. C. Mitra (2 sheets). It was found possible to adopt direct mapping for $3 \frac{1}{2}$ sheets there being little or no distortion in the field sections, this has considerably expedited the progress of the work. Sheets $83 \frac{\mathrm{~F}}{13,10}$ and $83 \frac{\mathrm{~J}}{1,9}$ were submitted for publication before the close of the survey year and the remaining sheets $83 \frac{\mathrm{~J}}{2,5,6,0}$ will be completed before the party takes the field.

In addition to the above, sheets $83 \frac{F}{5,6,10,12,14,1 \overline{0}}$ of the previous season have been submitted for publication during the year under report making a total of 10 one-inch sheets. The fiold sections of the reserved forest area surveyed on the 2 -inch scale in sheet $83 \frac{G}{13}$ have been sent to the Forest Map Ollice for fair mapping, the survey being a purely forest one.

The cost-rate for fair mapping works ont at a somewhat higher average per scuare mile than in previous years due to the large amount of 2 -inch survey having curtailed the area for fair mapping.

Rough triangulation charts for shects $83 . \mathrm{F}$ and 83. J with manuscript lists of data have been prepared and submitted to the Superintendent of the Trigonometrical Survey. The computations of the traversing, carried out during the field season, have been completed, the work has proved of good quality.

TABLE 1.
OUT-TURNS OF DETAIL SURVEY.

Scalo.	Clamet of Sarey	Cirole.	Party.	Locality.	$\substack{\text { Out turn, square } \\ \text { milles. }}_{\substack{\text { a }}}$		A verage number of Axings per quare mile.	
					Total.		In situr (by resection).	Plane.table traverae.
t-inch .	Revision Survey	N	No. 1	Kashmir and Jammu	51	$20 \cdot 4$	$1 \cdot 2$	
t-inch .	Surrey	S	No. 6	Hyderāl)ād ...	9,886	$83 \cdot 5$	$4 \cdot 6$	
		E	No. 10	Upper Burma ...	300	$58 \cdot 6$	1.0	
1 -inch .	Survey	N	No. 1	Kashmīr and Jammu	588	48.7	$2 \cdot 0$	
		N	No. 2	Punjab \& Rạ̄iputāna	1,602	$47 \cdot 0$	$6 \cdot 0$	$5 \cdot 0$
		N	No. 4	$\begin{gathered} \text { United Provinces } \\ \text { and Nepāl } \end{gathered}$	130	$19 \cdot 4$	$8 \cdot 3$	$12 \cdot 8$
		8	No. 6	Bombay and Hyderābād	1,261	$23 \cdot 6$	$12 \cdot 5$	
		S	No. 7	Madras $\quad .$.	5,227	31.8	$9 \cdot 5$	
		E	No. 10	Dpper and Lower Burma \ldots	2,220	$19 \cdot 9$	$6 \cdot 0$	$5 \cdot 0$
		E	No. 11	Lower Burma ...	1,382	$18 \cdot 0$	$6 \cdot 0$	$15 \cdot 0$
		E	No. 12	Asamem ...	1,805	21.9(a)	$1 \cdot 0$	$20 \cdot 0$
$\begin{aligned} & \text { l-inch } . \\ & \text { l-inch } . \end{aligned}$	Re-survey Rerision Survey	N	No. 4	United Provinces and Nepāl	800	$27 \cdot 0$	$15 \cdot 0$	$13 \cdot 0$
		N	No. 2	$\underset{\substack{\text { Punjab } \\ \text { tãna }}}{ }$ and Rājpu-	1,043	$58 \cdot 0$	$4 \cdot 0$	$5 \cdot 0$
		N	No. 3	Uuited Provinces ...	2,152	$26 \cdot 5$	$8 \cdot 0$	
		N	No. 4	$\begin{gathered} \text { United Provinces } \\ \text { and Nepāl } \end{gathered}$	802	$42 \cdot 7$	11.5	$9 \cdot 6$
		E	No. 10	Upper Burma ...	65	$32 \cdot 9$	$5 \cdot 0$	
1-inch.	Supplementary	8	No. 7	Madras $\quad .$.	715	$49 \cdot 1$	$4 \cdot 8$	
14-inch . 2-inch	$\begin{array}{ll} \text { Nurvey } & . \\ \text { Survey } & . \end{array}$	S	No. 6	Hyderābād ...	30	$8 \cdot 5$	39.5	
		N	No. 3	United Provinces ...	391	$10 \cdot 7$	$16 \cdot 5$	
2-inch	Survey	s	No. 5	Berär and Central Provinces ...	64	$6 \cdot 6$	$20 \cdot 0$	$30 \cdot 0$
		8	No. 7	Madras	60	49	$88 \cdot 7$	
		E	No. 10	Upper Burma ...	222	$5 \cdot 8$	$10 \cdot 0$	42•0
		E	No. 11	Ditto. ...	285	$4 \cdot 9$	$1 \pm .0$	$44 \cdot 0$
		E	$\mathrm{N}_{0.12}$	Assam ...	474(b)	6.6(a)	...	$62 \cdot 0$
4 -inch	Military Survey	N	No. 1	North-Weat Frontier Province ...	64	$7 \cdot 2$	$37 \cdot 0$	
t-inch	Surver (special forent)	N	No. 3	United Provinces ...	50	$2 \cdot 0$	$133 \cdot 5$	
		E	No. 11	Upper Burma ...	128	$2 \cdot 9$	$22 \cdot 0$	$96 \cdot 0$

(a) Training section ereluded from everage.
(b) Includea $1 \cdot 54$ square mileo of unreserved land.

TABLE I.-Concluded.
OUT-TURNS OF DETAIL SURVEY.-Concluded.

Scale.	Class of Surves.	Circle.	Party.	Locality.	Out.turn, equaremilen.		Aversge number of fixinge per equare mlle.	
					Total.	Average per man rer month onth wotring ding.	In site (by resection)	Plane-table traverse.
4-inch	Supplementary Survey (apecial forest)	N	No. 3	United Propinces ...	495	$35 \cdot 0$	$20 \cdot 8$	
16-inch.	Survey .	N	No. 20	Sanāwar, Kālha, Fort Lockhart, Hangu and Thal ...	$1 \cdot 82$	$)$		$5 \cdot 69$
16-inch.	Re-survey	N	No. 20	Peshāwar, Rāwalpindi, Baklob, Jullundur, Bannu, Jhelum, Siālkot and Topa	27-77	$\} 0 \cdot 38$		$50 \cdot 12$
64 -inch.	Re-survey	N	No. 20	Peshāwar, Rāwalpindi, Bakloh, Jullundur and Banuu Bazaars	$0 \cdot 54$	$0 \cdot 03$		$3 \cdot 27$
$\begin{aligned} & 125 \text { feet } \\ & \text { tol inch. } \end{aligned}$	Survey	N	No. 20	Simla (N.I. Lines)	1 (a)			
125 feet to linch.	Supplementary Survey	N	Simla Survey Detachment	Simla ...	1,050.0(a)	$63 \cdot 0(a)$		$\begin{gathered} 4 \cdot 5 \\ (\text { per } \\ \text { acre }) \end{gathered}$

(a) Acre or neres,
TABLE II.
details of triangulation and traversing.

TABLE IT.-concluded.
DETAILS OF TRIANGULATION AND TRAVERSING.-concluded.

(a) Additional interaected points, previously fixed by triangulation, are available.
(b) Computations not completed,
TABLE III.
COST-RATES OF SURVEY.

TABLE III－concluded．

										ludes Rs． 15,394 ，on account	
		安	$\begin{aligned} & \not \underset{\sim}{\prime} \\ & \underset{\sim}{+} \end{aligned}$	$\begin{aligned} & \text { 會 } \\ & \text { A } \\ & \text { \& } \end{aligned}$	$$	∞ 0 $\underset{\sim}{\infty}$ $\underset{\sim}{*}$		－	（800		\square $\stackrel{\sim}{0}$ \sim \sim
 				＊	$\begin{aligned} & E \\ & = \end{aligned}$	응	！	：	令		S －
			*ì	；	$\stackrel{\infty}{\square}$	－	\vdots	$\stackrel{\square}{i}$	$\stackrel{1}{\infty}$	$\stackrel{+}{\infty}$	$\stackrel{\sim}{0}$
			\vdots	：	\vdots	：	\vdots	\vdots	！	幺	：
		＇torqdarsodoul	；	\vdots	；	！	；	$三$	；	\vdots	$\stackrel{\sim}{\sim}$
	argnbs		！	$\stackrel{\sim}{\infty}$	\dot{m}		$\stackrel{+}{\dot{+}}$	\vdots	$\stackrel{\text { ¢ }}{\text { ¢ }}$	$\stackrel{3}{3}$	\vdots
			$\stackrel{\infty}{*}$	\vdots	；	：	！	：	\vdots	！	！
		Coasne qour．f9	！	\vdots	\vdots	\vdots	：	\vdots	\vdots	！	\vdots
		－sasins quut－gi	！	！	：	\vdots	：	\vdots	\vdots	；	：
	кıътпа		：	\vdots	\vdots	\vdots	：	！	！	！	；
		－¢asame qouit	\vdots	\vdots	！	\vdots	：	！	：		\vdots
		－¢asaus qomez	！	$\begin{aligned} & \stackrel{+}{⿱ ㇒ ⿲ 丶 丶 ㇒ 寸: ~} \end{aligned}$	\vdots	$\begin{aligned} & \infty \\ & \vdots \\ & \hline 0 \end{aligned}$	！	\vdots	8	＋	$\stackrel{\rightharpoonup}{2}$
		－＜eation your－it	\vdots		－	：	\vdots	：	！	：	！
			\vdots	：	；	0	\vdots	！	\vdots	！	：
			；	\vdots	：	！	：	\vdots	$\stackrel{\sim}{i}$	\vdots	\vdots
		－Sasambeat qoutit	：	\vdots	\vdots	\vdots	；	：	；	\vdots	；
		－soaina qout－t	；	！	$\begin{aligned} & \text { م } \\ & \dot{\sim} \end{aligned}$	－	：	：	$\stackrel{\infty}{\underset{\sim}{i}}$	$\dot{8}$	$\stackrel{\infty}{\infty}$
		－sesine qomeq	；	\vdots	$\stackrel{1}{7}$	；	！	：	$\stackrel{\oplus}{\infty}$	\vdots	！
		－sasins yoti－f	\vdots	：	：	；	！	\vdots	\vdots	！	；
$\begin{aligned} & \text { 产 } \\ & \text { 炰 } \\ & \hline 1 \end{aligned}$					気	坔	$\stackrel{3}{\square}$			$\stackrel{\circ}{\square}$	易
宏				$\begin{aligned} & \infty \\ & \dot{8} \\ & \dot{4} \end{aligned}$	$\stackrel{\circ}{4}$	$\begin{aligned} & 1-8 \\ & \dot{4} \end{aligned}$	$\begin{aligned} & \infty \\ & \dot{8} \end{aligned}$	$\begin{aligned} & 0 \\ & \dot{\circ} \\ & \stackrel{\circ}{4} \end{aligned}$	$\begin{aligned} & 0 \\ & \stackrel{0}{4} \end{aligned}$	$\begin{aligned} & \underset{i}{2} \\ & \dot{4} \end{aligned}$	$\stackrel{\sim}{\sim}$
		¢	亿	∞	$\boldsymbol{\infty}$	$\boldsymbol{\sigma}$	∞	田	1 1	国	田

PART II.-GEODETIC AND SCIENTIFIC OPERATIONS.

TRIGONOMETRICAL SURVEY.

ASTRONOMICAL LATITUDES.

Personnel of No. 13 PARTY Imperial officers.
From 1st Octuber 1915 to 12 h September 1916
the Superintendent of the Trigonometrical
Survey held charge in addition to his other duties.
Major G. A. Beazeley R. E., in churge 13th to 24th September 1916.
Major H. H. Turner R. E., in charge 25th to 30th September 1916.

Lower Subordinate Service,
2 Compulers, etc.

As no officer was available no Latitude Operations were undertaken and the prrsonnel of the party was employed at the Head Quarters Offices. Progress was made with the marking of the Longitude stations by means of suitably inscribed slabs. U_{p} to the end of September 1916 the following stations have been marked:-

Agra, Akyab, Amritsar, Bangalore, Bellary, Deesa, Fyzabad, Jalpaiguri, Jubbulpore, Karachi and Nagarkoil.

PENDULUM OPERATIONS.

Personnel of No. 14 PARTY
The Superintendent of the Trigonometrical Surtey held charge in addition to his other dutics. Lower Subordinate Service.
2 Computere, etc.

As no officer was available no pendulum work was undertaken and the personnel of the party was employed at the Head Quarters Offices.

TRIANGULATION

By J. de Grafff Hunter, M. A.

Personnel of No. 15 PARTY.
Imperial Service.
J. de Graaff Hunter, Eeq., M. A., in charge.

Provincial Service,
Mr. L. Williame.
, G. A. Norman.
Upper Subordinate Service.
Mr. Jugal Behari Lal.
Lower Sulordinate Service.
16 Computers, elc.

No new triangulation was undertaken during the season 1915-16, but one detachment was employed in revising the southern triangle* of the Manipur Meridional Series, which when observed at the end of season 1901-02 exhibited a large triangular error. This detachment consisted of :-

Mr. L. Williams in charge.
Mr. Jugal Behari Lal.
Note-Mr. G. A. Norman's eorvices were lent to the Superintendent Northern Circle till the 15th September 1916. on which date he was transferred to No. 17 l'arty and Mr. Jugal Hebari Lal was traneferred to No. 19 Party from the Jet August to 17th September 1916.

Principal Triangulation.

The revision of the observations of the southern triangle of the Manipur Meridional Series was important as it formed the connection between this series and the Burma Coast Series, and it was nccessary to ensure an accurate conncxion before the final adjustment of the triangulation could be taken up.

The slations, at which observations were retaken, are situated on the western spurs of the Arakan Yomas in the Alyab and Kyaukpyu districts of Lower Burma. The country is of a most difficult nature being cut up by innumerable creeks and great difficulties were encountered in the matter of transport and supplies.

[^0]The two stations of the Burma Coast Series on which the Manipur Meridional Series had previously been closed were found destroyed. One of these stations Rongdong H.S. was rebuilt with the aid of the anxiliary marks but the old position of the second station Angrantaung (Ingrantaung) H. S. could not be satisfactorily determined and a new station was built on the site. It was therefore necessary to carry the observations down to a third station Rankhamao (Retkamauk) H. S. of the Burma Coast Series so as to ensure a thoroughly satisfactory connection.

The triangles were observed with Troughton and Simm's 12 -inch theodolite No. II and the average triangular error was $0^{\prime \prime} \cdot 6+$. This is satisfactory considering that the stations were unfavourably situated, several rays grazing badly over intervening hill ranges with the result that the helios and lamps were most unsteady and difficult to intersect accurately.

An opportunity was taken during the course of this work to carry out some astronomical observations. Two astronomical azimuths and two astronomical latitudes were observed, the results of which are summarised below, together with those previously obtained at the adjacent station of Dattanng.

The latitules were observed on the circum-meridian plan and the results show a very satisfactory degree of precision, the probable errors being $0^{\prime \prime} \cdot 19$ and $0^{\prime \prime} \cdot 13$ respectively. The probable error of a single observation in each case was $\Omega^{\prime \prime} \cdot 0$.

> Astronomical Latitudes and Azimuths.

Name of station			\#		Deflection of plumb-line. Positive ralues indicate westerly or southerly deflection.			
		$\begin{gathered} A-G \\ \text { (in meridian) } \end{gathered}$			$\underset{\substack{\text { (in prime } \\ \text { vertical) }}}{A-G \cot \lambda}$			
Yeponetaing	H.S.		$20^{\circ} 1{ }^{\circ}$	93×2	2819	$\begin{aligned} & -4 \cdot 17 \\ & {[-6 \cdot 0} \end{aligned}$	$\begin{gathered} -2-4 \cdot 4 \\ {[-16 \cdot 6]} \end{gathered}$	About 20 miles inland from Bur ma Coast with high ranges to north and south.
Ret-ka-mauk	H.S.	19 - 15	$93 \quad 25$	1085	$\begin{gathered} -1 \cdot 28 \\ {[-3 \cdot 3]} \end{gathered}$	$\begin{gathered} -9 \cdot 2 \\ {[-1 \cdot 4]} \end{gathered}$	On an island prac. tically on coast line.	
Dattaung	H.S.	$20 \quad 13$	931	...	$\left[\begin{array}{cc} +2 \cdot & 0 \\ {[+0 \cdot} & 2 \end{array}\right]$ Falues in squa in terms of spheroid.	$\begin{gathered} -10 \cdot 3 \\ {[-5 \cdot 0]} \end{gathered}$ e brackets are most recent (Helmert)	Adjusted on the Akjab Electrotelegraphic longitude reaults.	

The values of the latitudes, longitudes and azinuths of the stations are in final terms of the Burma Const Series computed from the finally adjusted values of the Indian Trianculation. These values will be slightly modified when the Burma triangulation is adjusted as a whole.

Azimuth Cbservations.-A correction of $+\vartheta^{\prime \prime} \cdot 2$ is necessary to close these results on the lonsitule ares (ride G.T.S. Volume XVIII Appendix S.) giving corrected results
 spheroid a further guantity $\boldsymbol{j}^{*} \cdot 0$ has to be added giving the final results $-16^{n} \cdot 6$ and $-l^{\prime \prime} 4$ repectively. It is worthy of note that the station Retkamauk situated on an island near the coast with open sen to the west and mountainous country to the east shows only a very slight inland (eastwand) dellection, whereas the station Yeponetang which is 20 miles inland has a deflection of $16 \% 6$ eatwati. This is comparable with the eastwatd deflection found at coast stations in India ry., Mahras, Mangalore.

TIDAL OPERATIONS

By Khan Bahadur Syed Aulad Hossein.

Tidal registrations by means of self-register-

Personnel of No. 16 Party.

Provincial Officers.

Mr. H.G. Shaw, in charge from 11th January 1916 to 17th February 1916.
Khan Bahadur Syed Aulad Hossein, in charge till 10th January 1916 and again from 18th February 1916 to end of the year.
Mr. Syed Zille Heanain.
Lower Subordinate Service.
20 Computers \&c. ing tide-gauges were continued during the year under report at the following ports* : -

Aden, Karãchi; Apollo Bandar (Bombay), Prince's Dock (Bombay), Madras, Kidderpore, Rangoon, Moulmein and Port Blair. This work wascarried out under the direction of this department, but the immediate control of all the tidal observatories was entrusted to the local ofticers of the ports concerned.

In addition to the automatic tidal registrations at the above ports, readings of high and low water were taken during day-light on tide-poles at Bhaunagar, Akyab and Chittagong throughout the year for the purpose of checking the corresponding predictions which were based on observations taken some years ago.

List of Tidal Stations.

The following is a complete list of the ports at which tidal observations have been carried out from the commencement of the tidal operations in 1874 up to the present time. The permanent stations are shown in italics; the others are minor stations which were closed on the completion of the requisite registrations.

$\begin{aligned} & \text { Serinl } \\ & \text { No. } \end{aligned}$	Stations,	Automatic or Personal observations.	Date of commencement of observations.	Date of closing of observations.	Number of years of observations.	Remaris.
1	Suez . .	Automalic .	1897	1903	7	
2	Perim . . .	"	1898	1902	5	
3	Aden - .	"	1879	8till working	37	
4	Maskat . . .	"	1893	1898	5	
Б	Bushire . . .	"	1892	1901	8	
6	Karàchi . . .	"	$\left\{\begin{array}{l}1868 \\ 1881\end{array}\right.$	1880 Still worbing	$\left.\begin{array}{l}13 \\ 36\end{array}\right\} 49$	\dagger Small tide.gauge working.
7	Henstal . .	"	1874	1875	$1\}$	
8	Narānar . .	"	1874	1875	$1)$	published.
9	Okla Point .	"	$\left\{\begin{array}{c}1874 \\ \text { Restarted } \\ 1904\end{array}\right.$	1875 1906	$\left.{ }_{1}^{1}\right\} 2$	Year 1904-05 is excluded.
10	Porbandar	Personal	1893	1894	2	
10A	Porbandar . .	Automatic .	1898	1902	2	Years 1898, 1899 and 1902
11	Port Albert Victor (Kāthī̄wãr).	Personal .	1881	1882	1	excluded,
11 A	Port Albort Victor (Kāthiāwãr).	Automatic .	1900	1903	4	
12	Bhaunagar . .	"	1889	1894	5	
13	$\begin{gathered} \text { Bombay } \\ \text { Bandar). } \end{gathered} \quad \text { (Apollo }$	"	1878	Still working	38	
14	Bombay (Prince's Dock).	"	1888	"	28	
15	Marmagao (Goa) .	"	1884	1889	5	
16	Kãrwār . . .	"	1878	1883	5	
17	Beypore . . .	"	1878	1884	6	
18	Cochin . . .	"	1886	1892	6	

[^1]| $\begin{aligned} & \text { Sorial } \\ & \text { No. } \end{aligned}$ | Btations. | Automatic or Permozal obeervations. | $\left.\begin{array}{\|c\|} \text { Date of } \\ \text { commencement } \\ \text { of observationg. } \end{array} \right\rvert\,$ | Date of closing of obervation. | Number of years of observationg. | Remabig. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 19 | I'utioorin - . | Automatic - | 1888 | 1893 | 5 | |
| 20 | Minicoy . . . | " • | 1891 | 1896 | 5 | |
| 21 | Galle . . | " | 1884 | 1890 | 6 | |
| 22 | Colombo . . . | $"$ | 1884 | 1890 | 6 | |
| 23 | Trincomalea . . | " | 1890 | 1896 | 6 | |
| 24 | Pāmban Pasa . . | " | 1878 | 1882 | 4 | |
| 25 | Negapatam . . | " • | 1881 | 1888 | 5 | Years 1883 to 1885 are excluded. |
| 26 | Madras . . . | $\cdots \quad$. | $\left\{\begin{array}{c} 1880 \\ \text { Restarted } \\ 1895 \end{array}\right.$ | 1890 Still working | $\left.\begin{array}{l} 10 \\ 21 \end{array}\right\} 31$ | |
| 27 | Cocanàda . . . | " | 1886 | 1891 | 5 | |
| 28 | Vizagapatam . . | " • | 1879 | 1885 | 6 | |
| 29 | False Point . . | " • | 1881 | 1885 | 4 | |
| 30 | Dablat (Sāgar Island) | " | 1881 | 1886 | 5 | |
| 31 | Dismond Harbour | " • | 1881 | 1886 | 5 | |
| 32 | Kidderpors . . | " | 1881 | Still working | 35 | |
| 33 | Chittagong . . | " - | 1886 | 1891 | 5 | |
| 34 | Atyab . . . | " • | 1887 | 1892 | 5 | |
| 35 | Dismond Island | " • | 1895 | 1899 | 5 | |
| 36 | Basrein (Burma) | " • | 1902 | 1903 | 2 | |
| 37 | Elephent Point . . | " | $\left\{\begin{array}{c} 1880 \\ \text { Restarted } \\ 1884 \end{array}\right.$ | $\left.\begin{array}{l} 1881 \\ 1888 \end{array}\right\}$ | 5 | Year 1880.81 is oxcluded. |
| 38 | Rangoon . . . | " • | 1880 | Still working | 36 | |
| 39 | Amherst. . . . | " | 1880 | 1886 | 6 | |
| 40 | Moulmein . . . | " | $\left\{\begin{array}{c} 1880 \\ \text { Restarted } \\ 1909 \end{array}\right.$ | 1886 Still working | $\left.\begin{array}{l} 6 \\ 7 \end{array}\right\} 13$ | |
| 41 | Mergui . . . | " | 1889 | 1894 | 5 | |
| 42 | Port Blair . . | " | 1880 | Still working | 36 | |

Working of the Observatories.
All the tidal obscrvatories, except Madras, were inspected by Mr. Syed Zille Hasnain during the year.

The inspection of the tidal observatory at Madras was carried out by Mr. H.G. Shaw.
In the course of the inspection of each observatory the level of the bed plate of the tide-gange with reference to the bench-mark of reference was carefully tested by means of spirit levelling; the working zero of the tide-gauge was determived by a series of observations during rising and falling tides and compared with the true or adopted zero; the zero of the graduated staff was tested with reference to the zero of the tide-gauge; all the instruments were thoroughly overhauled, cleaned and put in perfect working order and adjustment; the observatory well was cleaned and free communication between it and the sea was restored; the observatory cabin was examined and arrangements were made for any repairs, if necessary.

The following remarks regarding each observatory may be added :-
Aden.-The driving clock of the tide-gauge stopped several times owing to bad weather, but on each occasion the interruptions in the tidal registrations were only of a few hours duration. The Inspecting Officer found that the inlet hole of the observatory well which was originally one inch in diameter had, by action of the sea, become nearly twice as large, in consequence of which the water was allowed to pass in and out of the well too freely and the registrations of the tidal curves on the diagrams were considerably distorted.

He reported the matter at once to the Chief Engineer of the Port Trust who had the above defect remedied by having the inlet hole reduced to its original size.

Karächi.-The tidal registrations at this observatory were interrupted more than once owing to the communication hole between the sea and the observatory well being accidentally blocked for short intervals. The tide-gauge has, on the whole, worked satisfactorily.

Bombay (Apollo Bandar).-During the past year there has been only one interruption of a few hours in the registrations of the tide-gauge owing to the stoppage of the driving clock. With this exception, the gauge has worked very satisfactorily. At the time of the inspection the graduations on the lower portion of the graduated staff were found to have become very indistinct. The staff was removed and a new staff properly painted was fixed in its place.

Bonbay (Prince's Dock). -The tide-gauge at this observatory has behaved slightly better than last year. The tidal registrations were stopped 8 times during the year under report, the disturbing canse being the stoppage of the clock or the breaking of the pencil wire. The longest interruption was for 16 hours.

Madras.-There have been no breaks in the working of the tide-gauge during the year. Owing to the force of the waves the graduated staff fixed on the harbour wall close to the observatory was twice dislocated. Arrangements have now been made by the harbour Engineers to have it more permanently fixed.

Kidderpore.-The working of the tide-gauge has been satisfactory. The observatory cabin has been in constant need of repairs for some years past and the piles on which it stands are badly eaten away. Moreover, there has been continual trouble in keeping the bottom of the observatory well clear owing to shallowing at the present site. These facts were brought by the Inspecting Officer to the notice of the Deputy Conservator of the Port for the last two or three years. The Port authorities have consequently decided to build a new tidal observatory in deeper water close to the iron jetty at the Kidderpore Dock head at a short distance from the present observatory. The site of the new observatory was inspected by the Inspecting Officer in Jannary last and the plans of the building have since been received and passed by the Superintendent of the Trigonometrical Surver. 'The Deputy Conservator of the Port now reports that the new observatory may be expected to be completed in January 1917 .

Rengom.-The tide-gauge at this observatory has worked very satisfactorily during the past year, no interruptions having occurred in its registrations. As mentioned in last year's report, the length of the iron cylinder of the observatory was reduced by four feet to allow of a greater clearance between the bottom of the well and the river bed. This arrangement has had the desired effect. When the Inspecting Officer visited the observatory in February last he fomd the bottom of the well perfectly clear of mul and the communication between the river and the well quite free.

The observatory cabin was found to be in need of some repairs. The matter was brought to the notice of the Deputy Conservator of the Port who did the needful.

Moulmein.-'Tilal registrations at this observatory have been continuous and satisfactory. The Inspecting Ollicer found that some mud had collected on the outside of the cylinder which, if allowed to accumulate, mig!t have interfered with the free communication between the sea and the observatory well. He had it thoroughly cleared.

The graduated staff was found to have slightly sunk. It was removed and refixed at proper level, so that its zero was identical with the zero of the tide-gauge.

Port Blair.-The tide-gange at this observatory has, as usual, worked in a very satisfactory manner. The observatory was only built last year and every thing connected with it was found to be in a very neat and tidy coudition.

Computations and Reduction of Obseirvations.

All the computations pertaining to past year's work have been completed and there are no arrears. The tidal observations at the nine working stations for the year 1915 have been reduced by harmonic analysis and the values for the tidal constants thus determined are shown in the attached tables.

These tables give the amplitudes (R) and the epochs (ζ) at the various stations; they also give the values of H and K which are connected with R and ζ in such a way, through the various astronomical quantities involved in the positions of the sun and the moon, that if the tidal observations were consistent from year to year H and K would come out the same from each year's reductions.
1915.

	ADEN				KARACHI				BOMBAY (Apollo Bandar)			
	$\lambda_{0}=5.951$ feet				$A_{0}=7 \cdot 318$ feet				$A_{0}=10 \cdot 24.7$ feet			
	18	\checkmark	11	*	R	\checkmark	II	$*$	R	ζ	H	*
Short Perionl		-		\bigcirc		-		\bigcirc				
S_{1}	$0 \cdot 109$	$17+62$	$0 \cdot 10!9$	174.62	0-096	185.95	$0 \cdot 096$	$185 \cdot 95$	0.076	191-37	$0 \cdot 076$	$191 \cdot 37$
S_{3}	0.677	$2+4 \cdot+3$	0-677	2 $2+4 \cdot 43$	0.963	$325 \cdot 20$	0.963	$325 \cdot 20$	1-569	$5 \cdot 06$	[1.569	$5 \cdot 06$
S_{4}	0-005	$237 \cdot 88$	$0 \cdot 005$	$237 \cdot 88$	0-014	$3 \cdot 60$	0.014.	$3 \cdot 60$	0-022	$203 \cdot 23$	0.022	203-23
S	$0 \cdot 00.5$	$200 \cdot 41$	$0 \cdot 005$	$200 \cdot 41$	0.009	320-19	0.009	$320 \cdot 19$	0-006	$136 \cdot 47$	0. 006	$136 \cdot 47$
S_{4}	0.002	$309 \cdot 09$	0.002	309-09	$0 \cdot 002$	+9.76	(1.002	$49 \cdot 76$	0.003	$130 \cdot 10$	$0 \cdot 003$	$130 \cdot 10$
M_{1}	0-0.56	75.4+	0-10.:3	$10 \cdot 1!$	0.051	81.82	-0.039	47-61	0-076	$97 \cdot 77$	$0 \cdot 059$	$63 \cdot 75$
M:	l : 1 !	$239 \cdot 16$	1-56:3	$226 \cdot 19$	2-504	$296 \cdot 82$	- $3 \cdot 576$	$295 \cdot 04$	3-860	332-59	3.971	$331 \cdot 20$
M:	0-019	35.50	$0 \cdot 020$	210-60	$0 \cdot 048$	139 - 28	0.050	$316 \cdot 61$	0-06:3	: $10 \cdot+7$	$0 \cdot 066$	$28 \cdot 39$
M_{1}	-1.00\%	$301 \cdot 70$	$0 \cdot 001$	29.516	$0 \cdot 039$	$337 \cdot 71$	$0 \cdot 0+1$	$33+15$	0-103	333.51	$0 \cdot 109$	$330 \cdot 75$
M	0.00:3	$333 \cdot 4$	0.00:3	323-6:3	0-0-12	$211 \cdot 51$	0.046	$206 \cdot 16$	0.014.	75.30	$0 \cdot 015$	$71 \cdot 15$
M.	$0 \cdot 001$	$254 \cdot 06$	0.001	\| $2+10 \cdot 98$	0.005	$238 \cdot 00$	$0 \cdot 005$	$230 \cdot 8 i$	0.00.4	$325 \cdot 78$	0.004.	$320 \cdot 25$
O_{1}	$0 \cdot 761$	$237 \cdot 30$	0.665	$36 \cdot 9+$	0.780	$2+6 \cdot 2$	$0 \cdot 680$	$47 \cdot 31$	0-76:	$247 \cdot 65$	0-664	$49 \cdot 16$
			1-305	3.f. 86	$1 \cdot 45$	$211 \cdot 8.1$	1-324	$46 \cdot 86$	1.511	$211 \cdot 15$	1-38t	$46 \cdot 15$
K.	(0-2:314	-	$0 \cdot 190$	33.5-92	0-330	$105 \cdot 8+$	0.265	31642	0-558	$141 \cdot 37$	$0 \cdot 148$	351-71
P_{1}	0. $1: 27$	$220 \cdot 5!$	0.127	$30 \cdot 610$	$0 \cdot+16$	232-0]	$0 \cdot 416$	$4 \cdot 13$	0-43]	$233 \cdot+1$	$0 \cdot 131$	$43 \cdot 55$
					0-127	3:31-9+	$0 \cdot 112$	$45 \cdot 83$			$0 \cdot 124$	$51 \cdot 78$
Q_{1}^{\prime}	(1).201	$1 \geqslant 0 \cdot 0 \%$	0-17.5	$12 \cdot 01$	0-200	$129 \cdot 95$	$0 \cdot 175$	$54 \cdot 27$	0-200	$131 \cdot 27$	0-17-4	$59 \cdot 20$
L,	$0 \cdot 0.51$	$145 \cdot 90$	$0 \cdot 014$	2:3:3-is	0-110	$268 \cdot 74$	$0 \cdot 090$	$31+331$	0-135	$295 \cdot 43$	0-110	3.11-19
N.	0-120	[4is			0-600	1.99.60	$0 \cdot 617$	$281 \cdot 05$			76	317.93
\cdots	0.0.5	: 111.85	$0 \cdot 060$	$181 \cdot 19$	0-090	$35!9 \times 3$	$0 \cdot 093$	$2: 31 \cdot 0+$	0-125	$24 \cdot 49$	0.128	256.88
$\mu_{\text {, }}$	110.0.	1:1+61	$0 \cdot 0.95$	$185 \cdot 07$	$0 \cdot 049$	$268 \cdot 41$	$0 \cdot 05 \div$	$264 \cdot 8!$	O-174	318.78	0-181	316.02
	(1)-1090	21.20	0.0¢0)	$213 \cdot 7$ - ${ }^{\text {2 }}$	0-110	$317 \cdot 01$	$0 \cdot 110$	1318.60	0-207	$0 \cdot 98$	0-207	2.61
(MS)	10.116	$160 \cdot 7.5$	$0 \cdot 017$	$1.37 \cdot 18$	$0 \cdot 0+4$	32:3-81	$0 \cdot 045$	322.03	(0.101	$49 \cdot 13$	0-101	$47 \cdot 75$
(SOLI)	(1) 1021	1:3-4.3	0.03:	$137 \cdot 70$	$0 \cdot 024$	122-26	$0 \cdot 024$	$124 \cdot 05$	$0 \cdot 032$	$107 \cdot 06$	$0 \cdot 0.33$	108-45
~N	10.096:	$32.5 \cdot 15$	$0 \cdot 059$	$207 \cdot 0.9$	0.071	$11 \cdot+2$	$0 \cdot 073$	$256 \cdot 10$	0-089	$68 \cdot 56$	0.091	314.06
Ma^{2}	10.01:	$123 \cdot(6.5$	$0 \cdot 016$	24.5	0.035	$121+37$	$0 \cdot 037$	33.4.0:3	0.01+	$226 \cdot 77$	$0 \cdot 015$	$3+7 \cdot 44$
$\left(\mathrm{H}_{2} \mathrm{~K},\right)^{\prime}$	10.02 5	\$7-09	0-12:3	$278 \cdot 90$	0-060	183.80	$0 \cdot 057$	$17 \cdot 0: 3$	0-007	$155 \cdot 23$	0-007	348.84
$2 \mathrm{M}_{2} \mathrm{~K}$,	10.01.5	$206 \cdot 12$	$0 \cdot 01$	$21 \cdot .30$	$0 \cdot 02+$	261-52	$0 \cdot 0 \div 3$	$62 \cdot 94$	0-052	$27.9 \cdot 77$	$0 \cdot 051$	$78 \cdot 00$
Lunc:												
Mm	11.00! 0	:317-5:3	$0 \cdot 010$	20-39	$0 \cdot 023$	31.72	$0 \cdot 021$	2138-50	$0 \cdot 0+3$	3332-5i	0.01 .8	209 - 13
MF	11.0.5	$1+6 \cdot 12$	11.040	$3 \cdot 76$	0.016	90.0. ${ }^{-1}$	0.012	$15 \cdot 08$	$0 \cdot 0.50$	$113 \cdot 60$	$0 \cdot 037$	359 - 20
Msf	11.007	3fich	0.007	20-9.3	1).034	203-66	0.03.5	$205 \cdot 44$	0.026	$119 \cdot 43$	$0 \cdot 027$	$120 \cdot 81$
Sa	11-3:3.5	7\% 14	0-3:3:	3.97-12	0.114	$113 \cdot 67$	0.114	$33 \cdot 51$	$0 \cdot 163$	$33 \cdot 48$	$0 \cdot 163$	313-34
S:a	0-131		$0 \cdot 134$	1:31.42	0-079	316-97	$0 \cdot 079$	156.71	0-106	$3 \cdot 65$	0•106	203 -36

1915.

	BOMBAY（Prince＇s Dock）．				Madras．				KIDDERPORE．			
	$\mathrm{A}_{0}=8 \cdot 283$ feet				$A_{0}=2 \cdot 329$ feet				$\mathrm{A}_{0}=10 \cdot 4.53 \mathrm{feet}$			
	R	ς	H	к	R	\checkmark	H	＊	\ldots	ζ	H	\star
Short Period		\bigcirc				－		\bigcirc		\bigcirc		
s_{1}	0．098	191．41	$0 \cdot 098$	$191 \cdot 41$	0－030	$86 \cdot 120$	$0 \cdot 030$	$86 \cdot 12$	0．086	191－610	$0 \cdot 086$	$101 \cdot 61$
S_{2}	1．619	$5 \cdot 071$	$1 \cdot 619$	$5 \cdot 070$	0 － $1(5)$	$268 \cdot 950$	$0 \cdot 465$	$268 \cdot 95$	1－573	97.381	1－573	97－38
S_{+}	0－022	$215 \cdot 910$	0－022	$25 \cdot 910$	0－00：3 2	267.960	$0 \cdot 003$	$267 \cdot 96$	0．095	117.0810	$0 \cdot 095$	$117 \cdot 08$
S_{6}	0•00：3	$173 \cdot 890$	$0 \cdot 003$	173．89	0•001 1	122．010	0－001	122．01	0．002	16．70 0	0．002	$16 \cdot 70$
$\mathrm{S}_{5}{ }^{\text {b }}$	0．001	$16 \cdot 70$	$0 \cdot 001$	16.70	0－002	328－39 0	$0 \cdot 002$	1328－39	0－002	26：3－99 0	$0 \cdot 002$	$203 \cdot 99$
M_{1}	$0 \cdot 075$	$96 \cdot 520$	$0 \cdot 058$	（62－ 50	$0 \cdot 028$	$38 \cdot 20$	0．021	$4 \cdot 43$	0．067	100－33：0	$0 \cdot 051$	$66 \cdot 83$
M	$3 \cdot 976$	332 $5 \cdot 41$	小． 090	$331 \cdot 15$	1－065	239－60 1	$1 \cdot 096$	$238 \cdot 72$	3－756	$54 \cdot 32$	3．864．	$53 \cdot 98$
M_{3}	0．067	$215 \cdot 38$	0．069	3：3－31	0－003	195．95 0	0－00：3	$14 \cdot 63$	0－058	$100 \cdot 390$	0．060	$279 \cdot 88$
M_{4}	0－106	$340 \cdot 19$	0－112	$337 \cdot+2$	0．013	$195 \cdot 420$	0．013	19：3•66 0	0－703	$\because 8 \cdot 950$	0 74．	28－27
M_{6}	0．018	$17+54$	$0 \cdot 019$	$170 \cdot 10$	0－005	$101 \cdot 070$	0－006	98－4．3	$0 \cdot 1+2$	$305 \cdot 560$	$0 \cdot 15-1$	301．55
M_{5}	$0 \cdot 005$	$121 \cdot 430$	0－006	$115 \cdot 90$	0．002	$77 \cdot 910$	0．002	$74 \cdot 39$	0－052	$261 \cdot 110$	0．058	$259 \cdot 77$
O_{1}	0.757	$\because 26 \cdot 810$	0－660	$48 \cdot 32$	0．110	$164 \cdot 60$	0－095	$320 \cdot 6.1$	0－239	2.21818	0－208	$23 \cdot 78$
K_{1}	1－525	210．8S	$1 \cdot 397$	$45 \cdot 85$	0－330	1－10－37 ${ }^{0}$	0－30：3	335－35	0－4．55	$218 \cdot 7.5$	0－417	53－71］
k^{2}	0－537	1143－32	0－132	$353 \cdot 56$	$0 \cdot 156$	$53 \cdot 68$	0－120	26－1 18	0－622	$239 \cdot 610$	（ $\cdot 500$	$90 \cdot 0 \mathrm{c}$
P_{1}	O $42 \sim 4$	$232 \cdot 88$	$0 \cdot 124$	42－43	0－096	$165 \cdot 92$	0－096	$3336 \cdot 09$	0－166	$234 \cdot 94$	$0 \cdot 166$	$45 \cdot 1 ; 3$
J_{1}	0－142	$337 \cdot 17$	0－125	$50 \cdot 8+1$	0－0：38	$238 \cdot 36$	0－033	$311 \cdot 74$	$0 \cdot 040$	$301 \cdot 16$	0．0．35	$14 \cdot 2 \cdot 2$
Q_{1}	0－202	$133 \cdot 77$	0－176	$58 \cdot 73$	0．007	$170 \cdot 54$	0－0ット	96－28	0－030	$95 \cdot 8610$	0－026	$25 \cdot 47$
L_{2}	0•130	206•61	0－106	$312 \cdot 36$	0－0．47	211．13	$0 \cdot 035$	25， $2 \cdot 12$	0．190	$1+7 \cdot 2$	0－150	$60 \cdot 96$
N_{3}	0．963	$190 \cdot 74$	0－991	318．80	0．2．4	$112 \cdot 46$	0－2．7	235－29	0．727	282－64	0．745	$46 \cdot 30$
ν_{2}	$0 \cdot 143$	26.53	0－117	258－92	0－012	304．03	$0 \cdot 0.43$	175－16	（0．299	$1 \geqslant 0 \cdot 08$	0－308	$33.4 \cdot 01$
μ_{2}	0－179	$314 \cdot 32$	0．190	311－55	0－02？	$159 \cdot 47$	0．0．31	$157 \cdot 71$	0－302	172．50	0－320	171－8：3
	$0 \cdot 220$	$0 \cdot 63$	0．2：0	$2 \cdot 26$	0－0：3	243．78	$0 \cdot 0.53$	3－15－42	$0 \cdot 146$	111.59	0－146	113•26
（MS），	$0 \cdot 117$	50－12	0－120	19．0－1	0－008	233－58	$0 \cdot 008$	232－70	0． 658	$70 \cdot 71$	10．677	70－37
$(2 S M)$	$0 \cdot 038$	112．54	0－039	113．02	$0 \cdot 018$	207－14	$0 \cdot 019$	$205 \cdot 02$	$0 \cdot 079$	341－59	． 0.081	$342 \cdot 23$
2 N_{3}	0．077	$68 \cdot 32$	（0．079	1313．83	0－053	346．77	0．05	1．233．31	O－155	105－23	$0 \cdot 100$	$352 \cdot 90$
$\left(\mathrm{M}_{2} \mathrm{~N}\right)_{4}$	0．018	$257 \cdot 54$	0．020	$18 \cdot 22$	0．007	102．62	0－008	5 20． 2.57	0－279	2123	$0 \cdot 295$	25.85
$\left(\mathrm{M}_{2} \mathrm{~K}_{1}\right)_{3}$	0．004	$70 \cdot 64$	$0 \cdot 001$	204．20	0．016	$78 \cdot 13$	（0．01（	（272－23	0－159	｜：00－07	0－150	$34 \cdot 70$
$\left(2,1 \mathrm{I}_{2} \mathrm{~F}_{1}\right)$ ）	$0 \cdot 053$	$286 \cdot 23$	0．052	88•4．7	（0．00）	166．37	0．00：3	3 8：96 $\cdot 63$	0．015	172．78	（0）01．	． $337 \cdot 14$
Long								\bigcirc		\bigcirc		\bigcirc
Mm	$0 \cdot 039$	$335 \cdot 80$	$0 \cdot 043$	212－35	0．0．43	$67 \cdot 33$	0．0．1．8	8 303－（92	0－271	134.82	0－301	10 82
Mf	$0 \cdot 053$	14146	10.039	$357 \cdot 05$	0－060	$141 \cdot 58$	0．014	$13356 \cdot 64$	0．337	195．68	10－218	（50－15
MSf	$0 \cdot 025$	94．84	0．026	（96．22	0－0．16	i $324 \cdot 04$	0－0．17	7301．92	0．873	$38 \cdot 86$	（0．898	｜39－20
Sa	0．165	17．70	0． 165	297－56	0－398	，320－06	0－398	$8239 \cdot 80$	2－202	233．61	1－202	2153．4．3
Ssa	0． 100	$355 \cdot 80$	0．300	［195．5］	0－308	289－32	0－308	8 128•99	0－667	142 46	0－667	$7342 \cdot 09$

1915.

	RANGOON				MOULMEIN				POR'T BLAIR			
	$A_{0}=10 \cdot 410$ feet				$\mathrm{A}_{0}=8 \cdot 4 \cdot 49$ feet				$A_{0}=4.933$ feet			
	R	ζ	H	*	R	\checkmark	H	κ	R	\checkmark	H	*
Short Period		-		\bigcirc		\bigcirc		\bigcirc		\bigcirc		
S_{1}	0-132	$135 \cdot 80$	0•132	$135 \cdot 80$	0.113	$1+2 \cdot 38$	0.113	$142 \cdot 38$	0.036	$78 \cdot 50$	$0 \cdot 036$	$78 \cdot 50$
S_{2}	$2 \cdot 204$	$168 \cdot 06$	$2 \cdot 204$	168.06	$1 \cdot 54.6$	$146 \cdot 59$	$1 \cdot 546$	$1+6 \cdot 59$	0.979	317.03	0-979	317.03
S_{4}	0-103	$266 \cdot 78$	0-103	$266 \cdot 78$	0.072	225.37	$0 \cdot 077$	22537	0.005	$290 \cdot 17$	0-005	$290 \cdot 17$
S_{6}	$0 \cdot 007$	$20 \cdot 35$	$0 \cdot 007$	$20 \cdot 35$	0. 009	$228 \cdot 16$	0-009	$228 \cdot 16$	0.004	43-92	0.004	43-92
S_{3}	0.002	$305 \cdot 22$	0-002	305-22	0.003	$228 \cdot 99$	$0 \cdot 003$	$228 \cdot 99$	0.001	$300 \cdot 26$	0-001	$300 \cdot 26$
M_{1}	0.065	1+2-69	0-050	109•\%	0.041	11904	0.031	$85 \cdot 85$	0.029	$42 \cdot 51$	0.023	$9 \cdot 16$
M_{2}	5-756	128-95	5-922	129•14	$4 \cdot 115$	$110 \cdot 41$	1.233	110.70	I $\cdot 939$	281-59	$1 \cdot 995$	$281 \cdot 56$
M_{3}	0.0.34	$151 \cdot 4.3$	0.036	331-72	0. 039	$13+\cdot 3.5$	0-040	314.79	0-007	175.58	0.008	$357 \cdot 53$
Mr_{4}	0-7\%	$162 \cdot 22$	0-500	$162 \cdot 62$	0.898	$162 \cdot 81$	0-950	$163 \cdot 40$	0.006	$86 \cdot 12$	$0 \cdot 007$	$86 \cdot 05$
Mr_{6}	0-225	$81 \cdot 91$	0-245	82-50	0.053	175-18	0-058	$176 \cdot 00$	0.006	$83 \cdot 54$	$0 \cdot 006$	$83 \cdot 4.3$
Mr_{8}	0.075	$89 \cdot 91$	0.08.1.	90-69	0.0.49	$91 \cdot 14$	$0 \cdot 054$	$92 \cdot 32$	$0 \cdot 003$	$28 \cdot 44$	$0 \cdot 004$	28.30
O_{1}	0-345	219.61	0.301	$22 \cdot 77$	0-277	$2: 38 \cdot 52$	0-241	$41 \cdot 78$	$0 \cdot 169$	$141 \cdot 37$	$0 \cdot 147$	$30+28$
K_{1}	0.7333	$109 \cdot 21$	0-671	$34 \cdot 15$	0-488	$202 \cdot 40$	0-447	$37 \cdot 34$	$0 \cdot 445$	$132 \cdot 43$	$0 \cdot 407$	327-38
$\mathbf{K}_{\text {, }}$	0.796	- 309 - 80	$0 \cdot 640$	$160 \cdot 21$	(1.526	287-88	0-423	138-29	$0 \cdot 311$	101-93	$0 \cdot 250$	$312 \cdot 36$
P_{1}	$0 \cdot 180$	24.76	$0 \cdot 180$	$57 \cdot 99$	$0 \cdot 1+1$	25.78	0'141	64.99	$0 \cdot 127$	$148 \cdot 33$	$0 \cdot 127$	318-52
J1	0-0.5)	$333 \cdot 04$	0-0.49	44.79	0.036	3:37-93	$0 \cdot 032$	$50 \cdot 63$	0.055	$242 \cdot 97$	$0 \cdot 049$	315-86
Q_{1}	0.0.35	100-33	0-030	27.78	$0 \cdot 04.3$	$129 \cdot 18$	$0 \cdot 0.38$	$56 \cdot 77$	0.018	$3: 0 \cdot 24$	$0 \cdot 016$	$247 \cdot 31$
L_{2}	$0 \cdot 12 \%$	87-66	0-347	134-15	0-311	$69 \cdot 03$	0.255	11550	0.070	$244 \cdot 25$	0.057	290-63
N_{2}	1-020	$35+15$	$1 \cdot 049$	$118 \cdot 63$	0.776	3:37-37	0.798	$102 \cdot 00$	0. 387	153.38	0.398	27751
ν	0-295	$201 \cdot 0 t$	0-304	78.75	0-2.36	$1196 \cdot 97$	0-242	$71 \cdot 82$	0.062	$330 \cdot 90$	$0 \cdot 064$	205-26
μ_{2}	0.037	282-75	0.508	$28.3 \cdot 15$	0-385)	$26+23$	0.408	264.82	0.063	$322 \cdot 63$	0.066	$3: 2 \cdot 5 c$
	0-321	146.81	0.321	$148 \cdot 50$	0.262	128•61	0-262	$130 \cdot 30$	0-113	301 -58	$0 \cdot 113$	303-26
$(\mathrm{MS})_{4}$	0-1.5.	212-67	C. 468	$212 \cdot 86$	0. 766	205-57	0.788	205.87	0-(06	$234 \cdot 69$	$0 \cdot 006$	$234 \cdot 65$
(2SM)	$0 \cdot 14 ;$	4.4-5.5	$0 \cdot 150$	4+136	0. 148	$30 \cdot 80$	$0 \cdot 152$	$30 \quad 50$	$0 \cdot 010$	118.30	$0 \cdot 011$	$118 \cdot 3 \%$
N_{2}	1).30:	$194 \cdot 10$	0.314	-82.93	0•181	$169 \cdot 05$	$0 \cdot 186$	$58 \cdot 02$	0.034	$25 \cdot 05$	$0 \cdot 035$	273.31
($\left.2 \mathrm{I}_{2} \mathrm{~N}\right)_{4}$	0.188	35-2.5	$0 \cdot 199$	$159 \cdot 93$	0-348	29-82	0.308	$154 \cdot 75$	$0 \cdot 010$	$203 \cdot 20$	$0 \cdot 010$	327-29
($12 L_{2}$	$0 \cdot 169$	$252 \cdot 16$	$0 \cdot 159$	187.30	0-200	252.83	0.188	$88 \cdot 00$	0.033	$108 \cdot 10$	$0 \cdot 031$	903.01
(29,51)	$0 \cdot 114$	242.09	$0 \cdot 110$	47.5.5	0-115	255.85	0•11:	61-51	0•006	$38 \cdot 37$	$0 \cdot 006$	\|203-35
Lons												
Mm	$0 \cdot 159$	1 $15 \cdot 90$	$0 \cdot 210$	$21 \cdot 70$	0-3.59	$115 \cdot 10$	0.398	$20 \cdot 76$	$0 \cdot 028$	$115 \cdot 35$	$0 \cdot 031$	$351 \cdot 19$
\ff	0-239	$178 \cdot 07$	0-176	$31 \cdot 96$	0-422	188.82	0-311	4.2.61	$0 \cdot 074$	$160 \cdot 87$	$0 \cdot 055$	$15 \cdot 01$
MSf	0-369	$49 \cdot 64$	$0 \cdot 380$	$19 \cdot 14$	1-16:3	$46 \cdot 38$	1-197	4.6.09	$0 \cdot 016$	$336 \cdot 99$	$0 \cdot 016$	$337 \cdot 02$
Sa	1-194	232-17	$1 \cdot 10 \cdot$	151-96	2-208	$227 \cdot 40$	2-208	147-19	0-125	$250 \cdot 29$	0.125	170.09
$\mathrm{S}_{\text {sa }}$	$0 \cdot 074$	$1+66+40$	0.074	345-98	0-598	$32 \cdot 00$	0-5,98	291-58	$0 \cdot 079$	$0 \cdot 66$	0.079	$200 \cdot 26$

Data forwarded to England.

The following data were prepared and supplied to the Director, National Physical Laboratory, Teddington, England during the year under report:-
(a) Values of the tidal constants for 40 ports for the tide-tables for 1919, ready for use for the tide-predicting machine.
(b) Actual values of high and low water during 1914 at 12 stations. These include nine stations at which regular tidal observations by self-registering tide-gauges were carried out and three stations at which high and low water readings were taken during day-light on tide-poles.
(c) Comparisons of the above with predicted values for 1914, the errors being tabulated in such form as to be of use in improving the predictions, if possible.

Ermons in Predictions.

The predicted times and heights of high and low water for the year 1915, as given in the tide-tables, have been compared against the actual values obtained from tidal observations at the nine stations now working and at three other stations where tidal registrations by self-registering tide-gauges were stopped but the times and heights of high aud low water were read on the tide-poles.

The errors of the predictions thus determined are tabulated in the five tables herewith appended.

No. 1.

Percentages and amounts of the errors in the predicted times of high water at the various tidal stations for the year 1915.

Stations.	$\begin{gathered} \text { Automntic } \\ \text { finc.- } \\ \text { obeeree } \\ \text { obations. } \end{gathered}$	Number of comprisous hetween actunl and predicted values.	Errora of 5 minutes and under.	Errors nver 5 mimutes anll uuder 16 minutes.	Errors over 15 minutes and under 20 miuntes.	Errors over 20 minntes and under 30 ninutes.	Errors over 30 minutes.
			Per cent.	Per cent.	Per cent.	rer cent.	Per cent.
Aden	Auto.	682	48	46	4	2	0
Karñchi	"	700	20	40	15	16	9
Bhamagar	T. P.	365	69	31	0	0	0
(${ }^{\text {(pollo Bandur) }}$	Auto.	705	46	39	8	5	2
(Prince's Dock)	"	688	44	42	8	5	1
Madtas	"	704	46	44	5	4	1
Kidderpore	"	706	29	43	11	11	6
Chittagong	I. P.	365	38	44	9	7	2
Akyab	"	363	93	5	1	1	0
Rnogoon	Auto,	703	48	37	6	7	2
Moulmein .	"	701	28	44	13	10	5
Port Blair	"	705	36	45	8	7	4

No. 2.
Percentages and amounts of the errors in the predicted times of low water at the various tidal stations for the year 1915.

Stationg.	$\begin{gathered} \text { Automatio } \\ \text { or } \\ \text { orde.pole } \\ \text { observatione. } \end{gathered}$	Number of comparisons between actual nnd predicted values.	Errors of 6 minutes and uniler.	Errors oper 5 minutes and under 15 minutes.	Errors over 15 minutes nod under 20 minutes.	Errors over 20 minutes and under 30 minuter.	Errors over 90 minutes.
			Per cent.	Per cent.	I'er ceut.	Per cent.	Per cent.
Aded	Auto.	677	47	45	5	2	1
Karāchi	"	706	29	36	13	14	8
Bhannagar...	T. P.	365	65	3 o	0	0	0
Bombay $\left\{\begin{array}{l}\text { (Apollo Bandar) }\end{array}\right.$	Anto.	703	41	41	7	7	4
Bombay \{ (Prince's Dock)	"	686	40	42	9	7	2
Mudras	"	706	± 2	46	7	4	1
Eillderpore	"	703	26	40	14	11	9
Chittagoug	T. P.	365	42	42	6	6	4
Atyab	"	364	94	5	0	0	1
Raggoon	Aato.	703	33	36	11	12	8
Monlmein	"	700	22	42	14	13	9
Purt Rlair	"	706	44	42	5	5	4

No. 3.
Percentages and amounts of the errors in the predicted heights of high water at the various tidal stations for the year 1915.

Stations.	$\begin{gathered} \text { Automutic } \\ \text { or tide pole } \\ \text { observations. } \end{gathered}$	$\|$Number of complinrisnus hetween actulnt and prentictedl palues.	Menn range at arrings iu feet.	Efrore of t inches nod under.	Errors oret t inches nod under Binches.	Errors over 8 inches nnd under 12 inclies.	Ertora over 12 inches.
				Per cent.	Per cent.	Per cent.	Per cent.
Aden	Anto.	682	$6 \cdot 7$	92	8	0 .	0
Бага̄¢¢i	"	700	9•3	65	33	2	0
Phannagar...	T. P.	365	$31 \cdot 4$	68	29	3	0
Piombay $\{$ (Apollo Bandar)	Auto.	705	$13 \cdot \theta$	74	22	4	0
(Priace's Dock)	"	688	$13 \cdot 9$	70	24	5	1
Maitras	"	704	$3 \cdot 5$	74	23	3	0
Kilderpore	"	700	$11 \cdot 7$	47	25	14	14
Chittagong $\quad \therefore$...	T. P.	365	$13 \cdot 3$	49	27	13	11
Akjab	"	363	$8 \cdot 3$	80	17	2	1
Rangoon	Aato.	703	16.4	54	31	10	σ
Monlmein	"	701	$12 \cdot 7$	35	26	19	20
Port Hlair	"	705	$6 \cdot 6$	80	20	0	0

No. 4.
Percentages and amounts of the errors in the predicted heights of loo water at the various tidal stations for the year 1915.

Stations.	Automatic or tide-pole observalions.	Number of complarisong between netmal aud predicted villues.	Menn range st springs in fect.	Errors of 4 inches and unter.	Efrorg over 4 inches and under 8 inches.	Errora over 8 inclies and under 12 inchrs.	Errors over 12 inches.
				Per cent.	Per cent.	Per cent.	Per cent.
Aden	Aato.	677	$6 \cdot 7$	95	5	0	0
Earàchi	"	706	93	81	18	1	0
Bhannagar...	T. P.	365	$31 \cdot 4$	63	33	4	0
(Apollo Bandar)	Auto.	763	$13 \cdot 9$	71	25	4	0
Bormbay ((Prince's Dock)	"	686	$13 \cdot 9$	68	25	7	0
Madras	$"$	706	$3 \cdot 5$	78	21	1	0
Kidderpore	"	703	$11 \cdot 7$	47	29	17	7
Chittagong	'T. P.	365	$13 \cdot 3$	57	15	12	16
Akyab	"	364	$8 \cdot 3$	74	23	2	1
Rangoon	Anto.	703	164	36	28	20	16
Moulmeln	"	700	$12 \cdot 7$	37	25	14	24
Port klair	"	706	66	91	9	0	0

No. 5.
Table of arerage errors in the predicted times and heights of high and low water at the several tidal stations for the year 1915.

Stations.	Antomatic or tide-role observatious.	Menn range at mprines in fert.	Aremge Errors					
			$\begin{aligned} & \text { of time } \\ & \text { in miuntes. } \end{aligned}$		of heisht in terms of the range,		of height in inches.	
Open Coast.			II. W.	L W.	H. Wr.	L. W.	II. W .	L W.
Aden ...	Auto.	$6 \cdot 7$	7	7	. 025	$\cdot 025$	2	2
Karāchi	"	$9 \cdot 3$	1i)	13	-036	- 027	\pm	3
Mhamagar...	' ${ }^{\text {' P. }}$	314	5	\pm	. 011	. 011	4	4
Bombay $\{$ (Apollo Bandnr)	Alito.	$13 \cdot 9$	8	10	-018	-018	3	3
(Prince's Duck)	"	139	8	9	-026	-02.1	4	4
Madrns	"	$3 \cdot 5$	8	8	. 071	$\cdot 071$	3	3
Akynb	T. P.	$8 \cdot 3$	1	1	-030	$\cdot 030$	3	3
Port Blair	Aulo.	66	10	9	-038	. 025	3	2
General Mean	\ldots	\ldots	8	8	. 032	- 029	3	3
Riverain,								
Kilderpora...	Aluo.	11.7	12	14	- $0+3$	-043	6	6
Chittugong	I. P.	$13 \cdot 3$	10	9	-038	-038	6	6
Rnggnon	Auto.	16.4	8	13	. 025	-036	5	7
Moulmein	"	$12 \cdot 7$	12	15	-052	-032	8	8
Gencral Mean .	\ldots	\cdots	11	13	$\cdot 040$	- 042	6	7

Summary for 1915.

Number of Stations.	Predictions teated by	Prrcentage of Predictiong, at higi and low water mithin					
		15 minutes of netunls.		8 inches of actunls.		one.tenth of mean range.	
		High.	L.ow.	High.	Low.	High.	Low.
6 Open coast	3. K. Tide-gange	82	\$2	98	98	96	96
2 .	Tide-pole	99	100	97	97	99	99
3 Riverain	S. R. Title-gnuge	76	66	73	67	94	92
1 ."	Tide-role	81	St	76	72	96	92

> Comparison of the Predictions for the rear 1915 with those for the phevions rear.

On comparing the predictions of times and heights of high and low water at all the working stations for the year 1915 with the corresponding actual-readings it appeared that the predictions for times at Aden, Madras and Moulmein and those of heights at Kidderpore and Karnchi hal slightly improved since the year 1!14. The predictions at other stations were practically of the same standard of accuracy as those for the year 1914.

The greatest difference between the actual and predicted heights of low water for 1915 at the riverain ports was as follows :-

Kilderpore	1 foot 11 inches on 27th and 28th July 1915, actuals being lower.
Rangoon	2 feet 5 inches on 27 th October 1915, actuals being lower.
Moulmein	3 feet 3 inches on 2 th July 1915, actuals being lower.

Tide-Tables.

The tide-tables for the year 1917 have been received from England and distributed to the various officers concerned. The tide-tables for the year 1918 are being published in England and the data for the preparation of the tide-tables for 1919 were despatched to England in April 1916.

The amount realized on the sale of tide-tables during the year ending September 1916 is Rs. $1,571-3.10$.

Programme for season 1916-17.
Tidal observations during the coming year will be continued at the 9 observatories now working.

LEVELLING

By H. G. Shaw.

Personnel of No. 17 PaRTY

Provincial Officors.
Mr. H. G Shaw, in charge.
" D. H. Lura.
", T. F. Kitchen.
" Jiya Lal Sabgal, up to 31et August 1916.
" N. N. Chuckerbutty, L. C. E.
Opper Subordinate Service.
Mr. Karuna Kumar Das, up to 21st May 1916.
, Satish Chandra Mukerii.
Lower Subordinate Service.
2 Compulers.
7 Recorders.
2 Clerks.

The recess office of the party closed at Mussoorie on 14th October 1915 and opened at Dehra Dūn on 21st idem. The detachments left Dehra Dun for the field on the 4th November 1915 and returned to recess quarters at Mussoorie between the 19th April and 3rd May 1916.

Four detachments were employed in levelling operations* during the past field season. The outturn amounted to 828 miles of "fore and back double levelling of precision" in the Punjab, the United Provinces and in the Delhi Province. The out-turn includes 24 miles in Bahāwalpur State, 24 miles in Dholpur State and 53 miles in Gwalior State. Full details of the out-turn of work are given in Table I attached.
The health of the party was on the whole good. There were a few cases of pneumonia among the Khalasis at the commencement of the field season. Mr. Kitchen was also laid up with pneumonia towards the end of the field season which necessitated Mr. Luxa taking charge of his detachment.

Levelling operations.-The work was divided among the four detachments as follows; each detachment consisted of one levelling officer, 2 recorders and 18 menials :-

$$
\text { Nos. } 1 \text { (A) and } 1 \text { (B) Detichments. }
$$

Mr. Chuckerbutty was in charge of No. 1 (A) and Mr. Mukerji of No. 1 (B) detachment. These two detachments worked in opposite directions
(1) Levelled from Delhi via Karnal to Ambäla along the Graud Trunk Road. This is a new line and completes the circuit Delhi-Meerut-Ambala-Delhi. The closing error being 0.075 of a foot in a distance of 293 miles as shown below :-

Lines.		$\begin{aligned} & \text { Dietnnce } \\ & \text { in } \\ & \text { miles. } \end{aligned}$	Unadjusted dynnmic difference of height in feet.	Fenr.
From	To			
Standard	Standerd	$45 \cdot 5$	$-20 \cdot 435$	1912-13
B. M. nt Delhi.	B. M. at Meerut.			
Standard	Standard	$125 \cdot 4$	$+164 \cdot 993$	1912.13
B. M. nt Meerut.	B. M. al. AmbālaCantonment.			
Standard B. M. at Ambāla Can -	Standerd B. M. at Delli.	121.9	$-144 \cdot 633$	1915.16
	Total	$292 \cdot 8$	-0.075	

(2) Revised the following lines:-
(a) From Somna to Aligarh along the Grand Trunk Road and thence along the main road to Agra.
(b) From Agra to Gwalior via Dholpur along the Agra-Bombay Trunk Road. These lines were originally levelled in 1861-6iz.
(c) Prom Lucknow ria Unao to Cawnpore by road. This line was originally levelled in 1808-69.

The discrepancies between the old and new eights of bench-marks on the above lines are given in table III appended. It will be seen that there is a large difference of about 1.8 feet in all the bench-marks from Colonel Sander's monument, $\frac{\text { n.m. }}{j_{4} G}$, to the standard benchmark at (iswalior, $\frac{11 \mathrm{M} .31}{54 \mathrm{~J}}$, on the Agra-Gwalior line.

[^2]The bench-mark at Colonel Sander's monument was the initial poist in 1905-06 for the connection of the Standard bench-mark at Gwalior and the continuation of the line to Jhansi, and is identical with that connected in 1915-16. The evidence is strong that the point on which the staff was placed in 1861-62 is not the same as that on which it was placed. Further evidence will be available when the line from Jhansi to Cawnpore is completed.

Nos. 2 and 3 Detachments.

Mr. Kitchen was in charge of No. 2 and Mr. Jiya Lal Sahgal of No. 3 detachment. Mr. Luxa took charge of No. 2 detachment on 28th March 1916 owing to Mr. Kitchen's serious illness.

The above detachments worked in opposite directions, and levelled from Jhang ria Fāzilka, Mandi Dabwäli, Sirsa, Hissār and Rohtak to Delhi by road, crossing by direct levelling the Sutlej and Rnvi rivers en route. This is a new line. It traverses numerous canals and large irrigated tracts in the Punjab and will furnish additional data for irrigation and other purposes.

This line closes the circuits (a) Mandi Dabwāli-Ferozepore-Lahore-Sargodha-JhangMandi Dabwäli and (i) Delhi-Ambāla-Ferozepore-Mandi Dabwãli-Delhi, the closing errors being $0 \cdot 518$ and $0 \cdot 373$ of a foot respectively, as shown in the following tables:-

Limes.		$\begin{array}{\|c\|} \hline \text { Distance } \\ \text { in } \\ \text { miles. } \end{array}$	Unadjusted dynamic difference of hetght in feet.	Year.	Lines.		$\begin{array}{\|c\|} \hline \text { Distance } \\ \text { in } \\ \text { miles. } \end{array}$	Unadjunted dynamic difference of height in leat.	Year.
From	To				Froul	''o			
Circuit A .					Circuit B.				
Embedded B. M. at Mandi Dabwidi.	Standard B. M. at Ferozepore.	$76 \cdot 7$	$+5 \cdot 343$	1907-08	Standard B. M. at Delhi.	Standard B. M. ut Ambinla Can. tonment.	$121 \cdot 9$	+ 144.633	1915-16
Stendard B M. ar Ferozepure	Standurd B. M. nt Lahore Cantonment.	$40 \cdot 4$	+ 59.731	1913.14	Standard B. M. at AmbālaCantonment.	Block-stone B. M. embedded at Doraha.	57•3	- 58.814	1913-14
Standard B. M. at Lahore Cantonment.	Embedded B.M. at Ky. Rest-houso surgodhu.	117.2	- $94 \cdot 287$	1911-12	Block-stone B. M. eurbedded at Doraha.	Standard B. M. at Ferozepore.	$86 \cdot 9$	-19 ± 140	1860-61
Embedded B M. at Kg. Kest-hanue Sargodha.	Embedded B.M. at Sessions House, Jhang-Ma- 	$69 \cdot 1$	$-108 \cdot 528$	1911.1:	Standurd B. M. nt Ferozepore.	Embedded B. M. at Mandi Dabwàli.	$76 \cdot 7$	- $5 \cdot 343$	1907.08
Emburded B. M. at Messions House. Jonne Ma-	Fimberded B. M. II Mandi Daiwill.	179.5	+ $137: 23$	$1915 \cdot 11=$	Embedderl B. M. at Mandi Dabwáli.	$\begin{aligned} & \text { Standurd } \\ & \text { B M. M. } \\ & \text { Delhi. } \end{aligned}$	$202 \cdot 8$	+ $113 \cdot 291$	1915-16
	Tutal	+ 491.9	- 0.514			'「otal	$5+5 \cdot 6$	- 0.373	

A branch-line from Fäzilka to the Standard bench-mark at Sádikganj (Bahāwalpur State) was run in order to strengthen the connection of this Standard bench-mark. It was originally connected in $1909-10$ with only one old bench-mark. This connection was considered unsatisfactory, and was rejected. The present season's work reveals an umusual accumulation of difference between the two levellers in the results of the fore and back levelling, the cause of which is under investigation. The connection of the Standard is therefore still unsatisfactory.

Genefat, Notes.

In 1913-1t the new system of "fore and back double levelling" of precision on the lines laid down in the resolntion passed at the 17 th General Conference of the International Geodetic Association on the 2.5th Sejtember 1912, was first adopted and has since been employed.

The following table gives the resulte of the various lines which have been levelled on this new system. It will be seen that the results of the probable accidental and systematic errors are well within the prescribed limits as given in the resolution passed at the above mentioned Conference for "Levelling of High Precision".

Table showing (i) the probable accidental error and (ii) the probable systematic error, calculated according to the following formule taken from Departmental Paper No. 6 of 1914:-
(i) $\eta_{\mathrm{r}}^{2}=\frac{1}{9}\left[\frac{\Sigma \Delta^{2}}{\Sigma \mathrm{~L}}-\frac{\Sigma r^{2}}{(\Sigma L)^{2}} \times \Sigma \Sigma^{2} \frac{\mathrm{~L}}{2}\right]$
(ii) $\sigma_{\mathrm{r}}{ }^{2}=\frac{1}{9 \Sigma \mathrm{~L}} \times \Sigma \frac{s^{2}}{\mathrm{~L}}$
η_{r} is the probable accidental error in the case of a group of lines, whether forming a closed mesh or not;
σ_{r} is the probable systematic error in the case of a group of lines, not forming a network;
L is the length of an isolated line, or a side of a polygonal mesh in the case of a network;
ΣL is the total length of a group of lines or of the network;
Δ is the discordance of the results of the fore and back levelling found between these two consecutive bench-marks;
\mathbf{r} is the distance betreen these tro bench-marks ;
S is the total systematic discordance found for a complete line or for the side of a mesh, between the results of the fore and back levelling.

Lines.	Length.	Probable accidental error. \qquad $\pm 0.00416 \mathrm{ft}$. per nile.*	{fbb84a756-c5a9-41e3-a883-bf8d4eaf048c} Probable sytentitic error. }$\substack{ \pm 000106 \text { ft. } \\ \text { prr mile.* }}$	Year.
	Miles.	Foot per mile.	Foot per mile.	
Jacobābād to Quetta	$207 \cdot 2331$	± 0.0037	$\pm 0 \cdot 0001$	1913-14
Ferozepore to Lahore	54.991	$\pm 0 \cdot 0029$	± 0.0001	1913-14
Benares to Barakar with branch-line to Belsar Lock	312.872	± 0.002.	$\pm 0 \cdot 0002$	1914-15
Mecrut ria Morãdābād and Bareilly to Hāthras	22.3 -737	$\pm 0 \cdot 002$.	$\pm 0 \cdot 0002$	191t-15
Multán to Bahāwalpur	59.241	$\pm 0 \cdot 0023$	$\pm 0 \cdot 0004$	1914-15
Raichūr ria Bādralkot to Bijāpur	170.380	$\pm 0 \cdot 0028$	$\pm 0 \cdot 000 \pm$	1914-15
Bellary to Gooty	$57 \cdot 610$	$\pm 0 \cdot 0023$	± 0.0010	1914-15
Fäzilka to Sālikganj ...	$30 \cdot 198$	$\pm 0 \cdot 0036$	$\pm 0 \cdot 0009$	1915-16
Mandi Dabwãli to Fäzilka	53-927	$\pm 0 \cdot 0030$	± 0.0010	1915-16
Mandi Dabwâli to Delhi	202.788	$\pm 0 \cdot 0030$	$\pm 0 \cdot 0006$	1915-16
Ambaila to Jelhi	121.86:3	$\pm 0 \cdot 0023$	$\pm 0 \cdot 0002$	1915-16
Somma to Agra	$70 \cdot 355$	$\pm 0 \cdot 0028$	± 0.0008	1915-16
Agra to Givalior	$77 \cdot 010$	± 0.0031	$\pm 0 \cdot 0007$	1915-16
Lucknow to Cawnpore ...	$50 \cdot 765$	$\pm 0 \cdot 0030$	$\pm 0 \cdot 000 \%$	1915-16
Fäzilka to Jhang	$125 \cdot 600$	$\pm 0 \cdot 0029$	$\pm 0 \cdot 0000$	1915-16

* Limita which mast nol be exceeded in "Levelling of Hiyh Precision".

The probable errors of circuit-closure from the formula $\mathrm{E}=\sqrt{(0 \cdot 004)^{2} \mathrm{M}+(0 \cdot 00034)^{2} \mathrm{M}^{2}}$, deduced from the results of the Indian Geodetic Levelling, given in G. T. S. Volume XIX.

Circaits.				C-E.	$\frac{\mathrm{C}}{\mathrm{E}}$.
	Miles.	Foot.	Foot.	Foot.	
(A) Lahore-Rāwalpindi-Shähpur-SargolhaLahore	$448 \cdot 0$	$0 \cdot 3258$	$0 \cdot 1743$	+0.1515	$1 \cdot 87$
(13) Mandi Dabwāli-Ferozepore-Lahore-Sargodha-Jhang Maghiaina-Mandi Dabwāli ...	$491 \cdot 9$	$0 \cdot 3494$	0•1894	+0.1600	1.84
(C) Delhi-Ambāla-Doraha-FerozeporeMandi Dabwāli-Delhi	$545 \cdot 6$	$0 \cdot 2516$	$0 \cdot 2077$	+0.0439	$1 \cdot 21$
(D) Delhi-Meerut-Ambãla-Delhi	292.8	$0 \cdot 0.506$	0.1208	-0.0702	$0 \cdot 42$
(E) Delhi-Muttra-Hathras-Bareilly-MeerutDelhi	$409 \cdot 9$	$0 \cdot 0580$	$0 \cdot 1612$	$-0 \cdot 1032$	$0 \cdot 36$
(F) Rangoon-Thazi-Magwe-Taungdwingyi-Prome-Kangoon	882•1	$0 \cdot 1875$	0-3220	-0.1351	$0 \cdot 58$

The above circuits have been completed since the publication of G. T. S. Volume XIX, in 1910. None of these circuits are formed by lines levelled wholly on the new system.

With the exception of the following lines all the lines forming the above circuits have been levelled since 1910-11:-

Circuit A. Line Lahore-Rāwalpindi, levelled in 1905-06.
Circuits B and C. Line Ferozepore-Mandi Dabwāli, levelled in 1907-08.
Circuit C. Line Ferozepore-Doraha, levelled in 1860-61.
Circuit E Line Muttra-Hāthras, levelled in 1905-06.
The actual closing errors multiplied by $0 \cdot 6745$ are less in three circuits and greater in three, than the theoretical probable error of closure as deduced from the above formula.

The number of these circuits is so small that hardly any comparison, at present, of the quality of the new work can be made against that of the old work. The results tend to show that the quality of the old and new work are about the same.
TABLE I—Tabular Statement of out-turn of work, season 1915-16.

Detachment.Nos.	Lines.	Month.	Mean distance levelled in boti directions.				Total momber offeet (Mean of boti directions).		Mean number ot stations at which instruments were set up in both the directions.	Number of bench-maris connectid.																
			Main Line.	Extris and branch-lines. \qquad Mls.Chs.Lks.	Total.	Relevelled.			Primary.	Srcondari.																
												ت岂 g 总												$\stackrel{\dot{\theta}}{\stackrel{\rightharpoonup}{E}}$		
					Wle. Cls. Les.	Mla.Cbs.Lks.	Rises.	Falls.		Old.	New.	Old.	\|New.	Old.	/New.	Old.	New.									
$\begin{aligned} & 1 \text { (A) and } \\ & 1 \text { (B) } \end{aligned}$	Ambäla-Delhi	November 1915 Jecember January $191 \ddot{6}^{\circ}$ Tolals	$\begin{array}{r} 337345 \\ 766161 \\ 111399 \\ \hline \end{array}$	$2 \dddot{2852}$	33 3 79 10 11 11 13	8 61 8 7 20 45 1 7 23	$\begin{array}{r}285 \cdot 448 \\ 489 \cdot 177 \\ 80.455 \\ \hline\end{array}$	$255 \cdot 107$ $6+3 \cdot 272$ $101 \cdot 306$		$\left.\begin{array}{l} 355 \\ 826 \\ 116 \end{array}\right\}$	\ldots	\cdots	2	\ldots	\cdots		\ldots	12	...	1	7	111	\ldots	1
			121694	29852	1241756	17876	$855 \cdot 120$	994645		1297			2					12		1	7	111		1		
	Somna via Alī. garh to Agra	Junuary 1916 February , rotals	$\begin{array}{r} 616595 \\ 84244 \\ \hline \end{array}$...	$\begin{array}{r} \hline 616595 \\ 94244 \end{array}$	16287	$\begin{array}{r} 4: 7628 \\ 73.859 \end{array}$	$\begin{array}{r} 516 \cdot 950 \\ 66 \cdot 137 \end{array}$	$\left.\begin{array}{r} 692 \\ 84 \end{array}\right\}$...	\ldots	2	\ldots	\cdots	...	10	...	\ldots	\ldots	12	63	\cdots	1	...	\ldots	
			702839	...	702839	16287	$511 \cdot 487$	$583 \cdot 087$	686			2			\ldots	10			\ldots	12	63		1			
	Agra-Gxalior	January 1916 February $"$ March Totala	3 65 80 50 71 41 22 23 56	$\begin{array}{r} 57882 \\ 81521 \\ \hline \end{array}$	$365 \quad 80$ 567023 $3038 \quad 77$	0 48 20 3 18 87	$26 \cdot 691$ 660385 $204 \cdot 915$	$28 \cdot 892$ $565 \cdot 616$ $11+713$	$\left.\begin{array}{r} 38 \\ 662 \\ 238 \end{array}\right\}$	\cdots	..	1	\ldots	1	\ldots	5	6	2	9	10	54	...	\ldots	14	2	
			$77 \quad 077$	14143	9114.80	3677	H91.991	$709 \cdot 251$	1038		\ldots	1		1		5	6	2	9	10	54	...		14	2	
	Lucknow-Cawnpore	$\begin{array}{cc} \text { March } & 1916 \\ \text { April } \\ & \text { Totals } \\ \text { Grand Totals } \end{array}$	$\begin{array}{r}845 \\ 42 \\ 42 \\ \hline\end{array}$	$\begin{array}{rrr} \hline 12 & 63 & 4 \\ 13 & 8 & 47 \\ \hline \end{array}$	$\begin{array}{llr} 21 & 28 & 6 \\ 55 & 24 & 65 \\ \hline \end{array}$	02950	$\begin{array}{r} 56 \cdot 035 \\ 261.025 \end{array}$	$\begin{array}{r} 38 \cdot 680 \\ 264 \cdot 649 \\ \hline \end{array}$	$\left.\begin{array}{l} \mathbf{4} 27 \\ \mathbf{3 3 7} \end{array}\right\}$	1	1	...	\ldots	4	4	...		6	62	...	1	1	\ldots	
			506120	257151	7155271	0 295	317060	$303 \cdot 329$	764		..	1	1		\cdots	4	4			6	62		1	1		
			3197940	42346	3623346	$23 \quad 820$	$2575 \cdot 658$	2595 -352	3185		...	6	1	1		19	22	2	10	35	290		3	15	2	
2 and 3	Fäzilía-Jhaug Maghiāna	November 1915 Necember January 1916 Tolals		$\begin{array}{r}74453 \\ 92139 \\ 121993 \\ \hline\end{array}$	31 41 2 76 33 75 46 57 27	37745 3	$\begin{aligned} & 120890 \\ & 397 \cdot 404 \\ & 16: 970 \\ & \hline \end{aligned}$	$148 \cdot 687$ $411 \cdot 066$ 196916	$\left.\begin{array}{l} 370 \\ 875 \\ 454 \end{array}\right\}$...	\cdots	\cdots	\ldots	\ldots	3	s	14	\cdots	\ldots	5	109	...	10	\cdots	\cdots	
			1254619	29 585	154524	72994	$682 \cdot 264$	756.669	1699	\ldots	\cdots	\ldots	\cdots		3	3	14	..		5	109		10			
	Fäzilka-Sādikganj	Norember 1915 January 1916 Totals	$\begin{aligned} & 155142 \\ & 147340 \\ & \hline \end{aligned}$		$\begin{array}{lll} \hline 16 & 7 & 18 \\ 15 & 25 & 78 \end{array}$	15394	$\begin{array}{r} 74 \cdot 848 \\ 74 \cdot 965 \\ \hline \end{array}$	$85 \cdot 716$ $85 \cdot 555$	$\left.\begin{array}{l} 187 \\ 158 \end{array}\right\}$...	\cdots	...	1	1	13	1	\ldots	...	\ldots	
			304482	06814	313296	15394	$1.49 \cdot 813$	171.271	$3+5$...			1		\ldots	1					13	1				
	Mandi Dabwili-Fäzilka	November 1915 January 1916 February " Narch Totails	1 36 52 2636 8 1 65 60 23 65 90	5 7 24 4 5 69 1 10 95	1 36 52 314332 5 71 20 24 7685	\cdots \cdots 2	$\begin{array}{r} 7 \cdot 437 \\ 161 \cdot 741 \\ 2 \cdot 8+3 \\ 143 \cdot 447 \\ \hline \end{array}$	$\begin{array}{r} 13 \cdot 407 \\ 194 \cdot 160 \\ 1.845 \\ 170 \cdot 805 \end{array}$	$\left.\begin{array}{r} 14 \\ 311 \\ 55 \\ 243 \end{array}\right\}$	\ldots	\cdots	\cdots	...	\ldots	1	2	5	4	34	\ldots	2	\ldots	\cdots	
			534410	102379	636789	21552	$315 \cdot 468$	380.217	623						1	2	5			4	34		2			
	Mandi Dabwāli-Delhi	January 1916 February $"$ March $"$ A pril $"$ Totals Grand Totals	8 70 57 96 24 85 57 16 71 40 43 25	0 35 50 6 49 74 2 67 43 2 62 33	9 26 7 102 74 59 60 4 14 43 25 58	4 7 3 0 40 80 3 52 91 9	$\begin{array}{r} 79 \cdot 319 \\ 661 \cdot 455 \\ 476 \cdot 092 \\ 251 \cdot 713 \\ \hline \end{array}$	$\begin{array}{r} 69 \cdot 305 \\ 614 \cdot 950 \\ 434 \cdot 233 \\ 251 \cdot 365 \end{array}$	$\left.\begin{array}{r} 86 \\ 1064 \\ 674 \\ 465 \end{array}\right\}$...	\cdots	1	1	1	3	\ldots	19	\cdots	\cdots	5	166	\ldots	13	\ldots	...	
			202 $75 \quad 38$	12550	2155038	82074	$1+68579$	$1369 \cdot 853$	2989			1	1	1	3		19			5	166		13			
			4125049	527278	4654327	194014	2616.124	$2678 \cdot 010$	4956		\ldots		2	1	7	6	38	14	322	\cdots	$\frac{15}{25}$	\cdots	\cdots	

TABLE II-Check-Levelling.
Discrepancies between the old and new heights of bench-marks.

Check-levelling at Jhang and between Jhang and Thatta Mähla.

52*	44 A	Embedded, Session's House, Jhang.	$0 \cdot 0$	$0 \cdot 000$	1911-12	$0 \cdot 000$	$0 \cdot 000$
53*	"	Embedded, Jhang Railway Station.	$1 \cdot 0$	-1.400	1911-12	-1.401	-0.001
54*	"	Main exit pussage	1.2	+ 8.435	1911.12	+8.433	-0.002
55*	"	Platform coping	$1 \cdot 2$	+ 7 . 824	1911-12	+7.833	+0.009
51*	"	Culvert	$0 \cdot 3$	+ 6.140	1911-12	+6.149	+0.009
47°	"	Coping goods platform	$6 \cdot 9$	$+16 \cdot 788$	1911-12	+16.848	+0.060 \dagger
$\stackrel{a}{46}$	"	Main exit passage	$7 \cdot 1$	$+15 \cdot 563$	1911-12	+15.618	+0.055 \dagger
46*	"	Embedded, Thatta Māhla Railway Station.	$7 \cdot 3$	+ $7 \cdot 425$	1911-12	$+7 \cdot 484$	+0.059 \dagger

Check-levelling at Mandi Dabwäli and between Mandi Dabwāli and Birang Khera.

5	44 K	Embedded, Mandi Dabwāli Railway Station.	0.0	$0 \cdot 000$	1907.08	$0 \cdot 000$	$0 \cdot 000$
6		Masonry pillar	$0 \cdot 9$	+ $0 \cdot 791$	1907-08	+0.783	-0.008
9	"	Embedded, Birang Khera Ry. Station.	$5 \cdot 2$	- 8.517	1907.08	-8.554	-0.037
4	"	Home signal	0.2	+ $4 \cdot 035$	1907.08	+4.033	-0.002
3	"	Masonry pillar	$1 \cdot 1$	+ 3.197	1907.08	+3.201	+0.004
2	,"	Kailwny bridge	$2 \cdot 7$	+10.358	1907-08	$+10 \cdot 366$	+0.008

Check-Levelling at Delhi.

83	53 H	Standard bench-mark, Delhi.	$0 \cdot 0$	$0 \cdot 00$ n	1906-07	$0 \cdot 000$	$0 \cdot 000$
84	"	Pirghaib Tower Station	0.9	$+29 \cdot 992$	1906.07	$+30 \cdot 005$	+0.013
85	",	Asoka's pillar	$1 \cdot 2$	+ $33 \cdot 437$	1906.07	+33.444	+0.007
86	,"	Steps	1.4	+34.941	1906-07	+34.944	+0.003
87	,"	Steps	1.3	+34.222	1906-07	$+34 \cdot 223$	+0.001
$3 \pm$	"	Bed rock	$1 \cdot 6$	-27.271	1912.13	$-27 \cdot 266$	+0.005
$\frac{1}{3} \ddagger$	"	Overbridge	$2 \cdot 1$	-28.860	1912.13	-28.854	+0006
$\frac{6}{66} \ddagger$	"	Platform, Kashmir Gate	$1 \cdot 7$	-67.807	1912-13	$-67 \cdot 834$	-0.027
80	"	Memorial step, St. James' Church.	1.8	$-57 \cdot 176$	1906-07	-57.186	-0.010
81	"	Flooring, St. Jnmes' Church	$1 \cdot 9$	-58.262	1906-07	-58.271	-0.009
79	"	Stone base, Mutiny Memorial.	$2 \cdot 2$	-60.839	1906.07	-60.844	-0.005

Check-Levelling at Guvalior.

28	54 J	Railway culvert No. 356	$0 \cdot 0$	$0 \cdot 000$	1905-07	0.000	$0 \cdot 000$
29	.,	Railway culvert No. 352	$1 \cdot 2$	+32.733	1905.07	+ $32 \cdot 724$	-0.009
30	,"	Railway culvert	$1 \cdot 9$	+38.709	1905.07	+38.703	-0.006
32	\cdots	Railway bridge No. 346	$3 \cdot 2$	+49.679	1905-07	+49.653	-0.026
33	"	Kailmay bridge	$4 \cdot 2$	+40.652	1905.07	+40.630	-0.022
34	,	Sithauli, Embedded	$4 \cdot 7$	+ 35.438	1905.07	$+35 \cdot 407$	-0.031

* Temporary line form numbera, not published, of Line 5in A (Sargoda-Mallãd).
+ These differedces are probsbly due to the large sectional difference obtained between the levellers on this section.
\ddagger Temporary line form nambers of Lines 62 B (Delhi-Mnttra) and 62 A (Meerat-Delhi), not publishod.

TABLE II (continued.)-Check-Levelling at Ambala.
Discrepancies between the old and new leights of bench-marks.

Description of bench-marks of the orikinal levelling that were counected for check-levelling.	$\left\|\begin{array}{c} \text { Distance } \\ \text { frame } \\ \text { sentring } \\ \text { benct-mark. } \end{array}\right\|$							Difference (Chict-Ohiotini)			
		Originallevelling	Date.	Check-levelling.				The sign + denotes that the height was greater and the aign less in check-levelling than when originally levelled.			
				1910.11.	1912-13.	1913.14.	1915-16.	1910-21.	1912.13.	1013.14,	1915-18.
101.6^ at St. Paul's Church, Anbaila	$\begin{array}{r} \text { Miles } \\ 0 \cdot 0 \end{array}$	$\begin{aligned} & \text { Feet } \\ & 0 \cdot 000 \end{aligned}$	$\begin{gathered} \text { Feet } \\ 1860.61 \end{gathered}$	$\begin{aligned} & \text { Feet } \\ & 0 \cdot 000 \end{aligned}$	$\begin{gathered} \hline \begin{array}{c} \text { Feet } \\ 0 \cdot 000 \end{array} \end{gathered}$	$\begin{aligned} & \text { Feet } \\ & 0 \cdot 000 \end{aligned}$	$\begin{aligned} & \text { Feet } \\ & 0 \cdot 000 \end{aligned}$	$\begin{aligned} & \text { Feat } \\ & 0.000 \end{aligned}$	$\begin{gathered} \hline \text { Feet } \\ 0 \cdot 000 \end{gathered}$	$\begin{aligned} & \hline \text { Feet } \\ & 0 \cdot 000 \end{aligned}$	$\begin{gathered} \text { Feet } \\ 0 \cdot 000 \end{gathered}$
+ at ditto ditto	$0 \cdot 1$	+ 0.503	1906-07	+ 0.515	$+0.512$	$+0.513$	+ 0.521	+ 0.012	+ 0.009	$+0.010$	$+0.018$
Standard Bench-mark, Ambāla	0.1	+ 1.829	1906-07	+ 1.827	$+1.820$	$+1.825$	+ 1.825	- 0.002	- 0.009	- 0.004	-0.004
a.r.s. at Block No. 6, Station Hospital, Ambāla ... B.	$0 \cdot 4$	+ $0 \cdot 029$	1906-07	not connected.	+ 0.077	$+0.083$	+ 0.101	not counected.	+ 0.048	+ 0.054	$+0.072$
G.T.S. at Weslegan Church, A mbāla BM.	$1 \cdot 0$	+ 3•704	1906-07	+ 3.740	$+3 \cdot 737$	$+3 \cdot 757$	+ $3 \cdot 777$	$+0.036$	+ 0.033	$+0.053$	$+0.073$
G.T.s. at Block No. 3 of No. 2, Section Hospital, B. I . Ambāla.	$1 \cdot 2$	+ $4 \cdot 969$	1906-07	+ $5 \cdot 009$	$+5 \cdot 002$	$+5 \cdot 019$	$+5 \cdot 033$	$+0.040$	$+0.033$	$+0.050$	+ 0.064
G.T.S. at Block No. 2 of No. 2, Section Hospital, B. A Ambāla.	1.2	+ $4 \cdot 103$	1906-07	$+4 \cdot 139$	$+4 \cdot 133$	$+4 \cdot 149$	+ 4.170	$+0.036$	$+0.030$	$+0.046$	$+0.067$
G.T.S. at Block No. 42 R. H. A Lines, Ambāla ... 0 b.м.	$1 \cdot 9$	+10.090	1906-07	+10.123	+10•114	+10.135	+10 165	$+0.033$	$+0.024$	$+0.045$	$+0.075$
G.T.S. at Block No. 43 R.H.A. Lines, Ambāla ... B. M.	$2 \cdot 0$	+11.484	1906-07	+11.498	$+11 \cdot 479$	+11-500	+11.523	+ 0.002	$+0.021$	$+0.016$	$+0.039$
\dagger at R.C. Church, Ambāla	1.0	- 3.044	1906.07	not connected.	- $3 \cdot 046$	- $3 \cdot 030$	- $3 \cdot 022$	not connected.	-0.002	+ 0.014	+ 0.022
G.T.S. at R. C. Church, Ambāla $1 \mathrm{~B}$	$1 \cdot 1$	- $3 \cdot 618$	1906-07	not connected.	- 3.611	- 3.595	$-3 \cdot 587$	not connected.	+ 0.007	$+0.023$	$+0.031$
G.t.S. at N. W. end of "B" platfurm, Ambäla B. Cantonment Railway Station.	$1 \cdot 7$	- 2.667	1906-07	- $2 \cdot 620$	$-2 \cdot 636$	$-2 \cdot 622$	-2.612	+ 0.047	+ 0.031	$+0.045$	+ 0.055
G.T.S. at N.W. name plate on "A" platform of B. M. Ambāla Railray Station.*	$1 \cdot 7$	- 3.078	1906-07	not connected.	not connected.	$-3 \cdot 106$	- 3.139	not connected.	not connected.	-0.028	-0.061
G.T.S. at S.E. name plate on "A" platform of B.M. Ambăla Railway Station.	$1 \cdot 8$	$-3 \cdot 532$	1906-07	-3.498	- $3 \cdot 513$	$-3 \cdot 501$	- 3•490	+ $0.03 \pm$	+ 0.019	+ 0.031	+ 0.042

* This is a donbtfal bench-mark, it was missing in 1912-13 and was fonad reglaced a little arvay from its origioal site in 1913-14.

From this table it is noticed that there is evidence of progressive change of level in the Ambala area.

TAbLE III-Revision Levelling.
Discrepancies between the old and new heights of bench-marks.

conmactid dorifu the arilsionsty ophationg.			Distancefromatartingbench-mark	Diffehence of onthoumtric beiohte, abovi (+) oll bylow (-) the gtabting bench-mari.			Differenco (Revigion-Origiun) The sign+ denoter that the ter and the sign -less in 1815 -16 than when ori-ginally levelled. ginall
Number.	Derree sheet.	Deacription.		From publichod heights.	luate of origiual levelling.	From reviaion, 1015.18 (unadjusted).	
				Fe		Fee	Feet.
Revision of line Aligarh-Agra. Part of line No. 62 (Meerut-Agra).							
1	541	Block-stone embedded, Aligarh.	$0 \cdot 0$	$0 \cdot 000$	1861-62	$0 \cdot 000$	$0 \cdot 000$
$3{ }^{*}$	"	Well, Aligarh.	0	+ 4.628	1905-06	+ $4 \cdot 621$	-0.007
4	"	Railway distant signal, Aligarh.	0.5	+ 7.260	1905.06	+ 7.26t	+0.004
7	"	Standard bench-mark, A ligarh.	$1 \cdot 0$	+ $7 \cdot 018$	1905-06	+ $7 \cdot 022$	+0.004
6	"	Flooring, Post office, Aligarh.	15	$+1 \cdot 160$	1905.06	$+1.159$	-0.001
9	"	Block-atone embedded, near mile-stone 5 .	$7 \cdot 4$	- 3.289	1861-132	- 3.290	-0.001
13	"	BLock-stone embedded, Hāthras.	$22 \cdot 3$	$-19 \cdot 862$	1861-62	- 19.824	+0.038
20	"	Platform, Hāthras Inspection Bungalow.	$22 \cdot 3$	$-17 \cdot 474$	1905.06	$-17 \cdot 431$	$+0.043$
21	"	Verandah, Hāthras City liy: Station.	$23 \cdot 4$	$-17 \cdot 917$	1905-06	$-17 \cdot 874$	$+0.043$
22	"	Embedded, Hāthras City liy: Station.	23. 5	- $20 \cdot 849$	1905-06	- 20.804	+0.045
14	"	Block-stone embedded, Kewnlgarhi.	$29 \cdot 6$	$-30 \cdot 714$	1861-62	$-30 \cdot 681$	+0.033
16	"	Block -stone embedded, Jownhirgarh.	36.5	- $39 \cdot 988$	1861-62	- $39 \cdot 887$	$+0 \cdot 101$
18	"	Block-stone embedded, Khandauli.	$43 \cdot 6$	$-50 \cdot 998$	1861.62	$-50 \cdot 993$	+0.005
19	"	Block-stone embedded, Nandlāpur.	$50 \cdot 9$	- 61.888	1861.62	$-61 \cdot 948$	-0.060
37	54 E	Platform, Jumna Bridge grods slied, Agra.	$52 \cdot 9$	- 89.814	1905-06	$-89 \cdot 906$	-0.092
36	"	Railway culvert, Agra.	53.2	- 89.401	1905-06	- 89.505	-0.10t
35	"	Jumna Ry: bridge, 14 th per, Agra.	$53 \cdot 4$	- 91-633	1905.06	- 91.732	-0.099
$3 \pm$	"	Jumna Railway: bridge 7 th pier, Agra.	53.6	-91515	1905-06	$-91 \cdot 602$	-0.087
33	"	Verandah, Agra Furt Railmay Station.	$54 \cdot 1$	-76.940	1905.06	$-77 \cdot 047$	$-0 \cdot 107$
32	"	Standard bench-mark Agra	54.2	-70.844	1905.06	- $79 \cdot 985$	-0.141
ご	"	Hiam, Ayra	$5.5 \cdot 2$	- $60 \cdot 243$	1905-(06	- 60.346	-0.103
27	"	Flnoring. Post Master's Bungalow, Agra.	$55 \cdot 5$	- 53.829	1905.06	- $53 \cdot 947$	-0:118
33	54 I	Block-stone cmbedded, Agra.	$56 \cdot 2$	$-54 \cdot 871$	1861.62	- 54.999	-0.128

Thicse results point to a change of level having occured between Kewalgarhi and Agra during the periol 1861 to 1016.
Revision of line Agra-Gualior. Part of line No. 63 (Agra-Sironj).

33	54.1	Block.stone embedded, Agra.	$0 \cdot 0$	$0 \cdot 000$	1861-62	$0 \cdot 000$	$0 \cdot 000$
29	51 E	Monument. Agra	$0 \cdot 8$	- 3.693	190:5-06	3.692	$+0.001$
30	,	Metcalfe Testimonial, Agra	$1 \cdot 1$	- 2.413	1905-06	- 2.424	-0.011
38	"	Block.stone embedded, near $\$ \frac{1}{4}$ miles from Agra.	$7 \cdot 6$	- 4.366	1861-62	4.37*	-0.008
1	54 F	Block-atone embedded, Birai.	14.6	- 1.337	1861.62	- 1.411	-0.074
4		Dholpur II. S.	$30 \cdot 9$	$+388.038$	1861-62	$+387.963$	-0.075
8	"	Block-atone embedded, Jorà	$48 \cdot 6$	+ 22.118	1861-62	+ 22.188	-0.230
f		C.il : Sandera' monument	$52 \cdot 3$	$+30 \cdot 267$	1961-62	+ 28.495	$-1 \cdot 772 \dagger$
2	54 J	Road culvert	574	+ $20 \cdot 734$	1905-07	+ 18.970	$-1 \cdot 764$
3		Rnad bridge	57.9	+ $19 \cdot 983$	1905-07	+ 18.222	-1.761
4		Well	58.2	+ 33.034	1905-07	+ 31.265	-1.769
6	"	Plat form, Banmor Railway Station.	62.1	+ $65 \cdot 416$	1905.07	+ 63.621	-1.795

TABLE III-(contd.)-Revision Levelling.
Discrepancies between the old and new heights of bench-marks.

Revision of line Agra-Gwalior. Part of line No. 63 (Agra-Sironj) contd.

7	54 J	Rock in situl	$63 \cdot 9$	$+60 \cdot 585$	1905-07	$+58.815$	-1.770
8		Hindu monument	$66 \cdot 0$	+ $63 \cdot 148$	1905.07	+ $61 \cdot 383$	-1.765
		Culvert	68.5	+ $90 \cdot 199$	190507	+ $88 \cdot 378$	-1.821
10	",	Bed rock at sānichri II. s.	70.3	$+263 \cdot 197$	1905.07	+261 330	-1.867
11	"	Stone embeldded, Banmor Railway Station.	62.2	+ $60 \cdot 127$	1905-07	+ $58 \cdot 306$	-1.821
12	"	Platform, Bannor Railway station.	62-2	+ $65 \cdot 422$	1905-07	+ 63.641	-1.781
13	"	Railway bridge	$62 \cdot 9$	+ $71 \cdot 909$	1905.07	+ $70 \cdot 122$	-1.787
14	"	Railway culvert	$64 \cdot 4$	$+82.051$	1905.07	+ 80.250	-1.801
15		Railway	$65 \cdot 5$	+ 86.881	1905-07	+ 85.055	-1.826
16	"	Railway	$67 \cdot 1$	+ $92 \cdot 710$	1905.07	+ 91.652	-1.058*
17	"	Knilway	$68 \cdot 0$	+ 94.901	1905-07	+ $93 \cdot 629$	-1.272^{*}
18	"	Railway	69-2	+ 101.354	1905-07	+ 99.514	-1.840
19	"	Railway bridge	(69.9	+114.093	1905.07	+112.266	-1.827
20	"	Railwsy culvert	$71 \cdot 6$	+120.818	1905-07	+ 119.025	-1.783
21	,	Railway	$72 \cdot 1$	+121.833	1905-07	+120.034	-1.799
20	"	P'latform, Morār Railway Station.	$72 \cdot 5$	+123.555	1905-07	+121.739	-1.816
23	"	Railway culvert	$72 \cdot 5$	+121-259	190.5 07	+119.579	-1.673*
$\stackrel{2}{4}$	"	Railway	$73 \cdot 1$	$+130 \cdot 771$	1905-07	+128.951	-1.820
27	"	Platiorm, Gwalior Railway Station Rand	$74 \cdot 1$	+147.688	1905-07	+145.860	-1.828
28	"	Railway culvert...	$74 \cdot 8$	+153.563	1905-07	+151 728	-1.835
31	"	Standard hench-mark, Gwalior	$77 \cdot 0$	+184.601	1905.07	+182.778	-1.823
Revision of line No. 65 (Lucknow-Caunpore).							
96	63B	Standard bench-mark Lucknow	$0 \cdot 0$	$0 \cdot 000$	1909-10	$0 \cdot 000$	0.010
97	"	Railway bridge, Lucknow	$0 \cdot 1$	$+6 \cdot 847$	1909-10	+6.857	+0.01n
9 B	,	Road culvert, Lucknow	$0 \cdot 5$	-24.931	1909.10	-24.932	-0.001
7	"	Sill, ChristChureh,Lucknow	$1 \cdot 3$	-30.079	1868-69	- $30 \cdot 091$	- 0.012
99	"	Milestone, Lucknow	1.5	-27.310	1009.10	-27 384	-0.024
6	"	Platform. Lucknow museum	$2 \cdot 7$	-28.691	1*67-69	-28.715	-0.024
8	"	Block-ktone emberdded, Lucknow	$0 \cdot 1$	-9.870	1868-69	-9.868	$+0.002$
9	'	Platform, Lucknow Rail. wny Stalion	$1 \cdot 8$	+5.744	1868.69	+ $5 \cdot 695$	-0.049*
10	"	Paved Sent. Lucknow	$3 \cdot 6$	$+10 \cdot 130$	1868.69	+10.122	-0.008
28	"	Block-stone embedded, Camupore	$49 \cdot 2$	$+13 \cdot 651$	1868-69	+13.764	$+0 \cdot 113$
70	"	Block-stone embedcied, Mahãā̃jur	$61 \cdot 3$	$+6 \cdot 307$	1864.65	+6.485	+0.178
51	"	Block-stone embedded, Bara Sirohi	$59 \cdot 4$	$+30.016$	1864-65	+30'229	+0.213

- Reconstructed.

TABLE IV.
List of G.T.S. Triangulation Stations connected by spirit-levelling, season 1915-16.

Name of etatiou.	Higet above yenmera civit.			$\begin{aligned} & \text { Difference } \\ & \text { Old-New. } \end{aligned}$	Remams.
	$\begin{gathered} \text { New } \\ \text { Nevirit. } \\ \text { leveling. } \end{gathered}$		Trinugu. lation.		
	Feet.	Feet.	Feet.	Feet.	
Huríla T. S. of the Jogi•Tilì Meridional Series	$588 \cdot 175$...	$598 \cdot 800$	+10.625	\odot inground floor mark. stond connected.
Pindi T. S. .. ", ",	$597 \cdot 186$...	$602 \cdot 330$	+5.244	Ditto.
Dipulün T. S. of the Sutlej Series...	$602 \cdot 727$	\cdots	$602 \cdot 200$	-0.527	Ditto.
Banaanwäls T. s. ." ., ..	633.903	...	623800	-0.103	Ditto.
Pipli T. s. of the Gurhagarh Meridional Bories	$671 \cdot 012$...	670.600	-0.412	Ditto.
Gūthãwàli T. S. " " ...	$670 \cdot 414$	\cdots	$666 \cdot 700$	-3.714	Ditto.
Sireibe '1'. S. of the Rahun Meridional series	7.8.162	\cdots	$706 \cdot 000$	-2.162	Ditto.
Dholpur F. S. of the Great Arc Meridional Уeries	937.944	$938 \cdot 011$...	+0.067	© on upper mark-stone at buse of protecting pillar.

MAGNETIC SURVEY

By E.C.J. Bond.

The present report on the work of the magnetic party in 1915-16 comprises:-
I.-An account of the work in the field and

Personnel of No. 18 PARTY.

Provincial Officers.
Mr. E.C.J. Bond, in charge.
, R. P. Ray, B.A.
, N. R. Muzumdar.
", R. B. Mathur, B.A.
Upper Subordinate Service.
Mr. B. B. Shome.
Lower Subordinate Service.
3 Magnetic Observers.
14 Computers, etc. in recess quarters.
II.-A note on each of the observatories*.
III.-Tables of the mean values of the magnetic elements, dates of magnetic disturbances, and hourly means and diurnal inequality of the magnetic elements at observatories in 1915.

I.-Work in the Field and in Recess.

1. Work during the field season.-The first general magnetic survey was practically completed after the 73 permanently marked repeat stations were observed at in the previous season, and as these repeat stations will be visited for magnetic observations at intervals of 5 years, for the determination of secular change, no field observations were taken during the year 1915-16. It was necessary, however, for a detachment to proceed to Delhi to select a suitable site for a new repeat station as the "Bela" land, on which the old station was situated, was being dug up under a scheme for grading the bank of the Jumna river. Comparative observations were taken by two observers at both the old and new sites, before the former was destroyed, to ensure a continuity of record for the determination of reliable secular change values for the locality.

The observatories at Dehra Dūn, Kodaikānal and Toungoo were inspected by the officer in charge during two months of the field season and a complete set of observations at each was taken by him for the yearly comparison of instruments. The Alibāg observatory which is independent of the magnetic survey of India was also visited for comparative observations.

The staff of the party was chiefly employed during the field season in the final reduction of the Declination and Horizontal Force at all field stations in India, Burma and Ceylon to the selected ejoch, lst January 1909.

At the request of the Port Commissioners of langoon for a survey officer to put the transit instrument at the Rangoon observatory into proper adjustment, the officer in charge of the magnetic party was dirceted to visit Rangoon for the purpose where he broke journey on his way to Toungoo to render the necessary assistance.
2. Work dur?ng recess.-The computation of the comparative observations taken during the field season and the computation and tabulation of the Declination, Dip, Horizontal Force and Vertical Force for the 3 observatories (Dehra Dūn, Kodaikānal and Toungoo) for 1915 have been completed. The mean values of these elements for the year 1915 derived from measurements of traces of all available days, excluding those of great disturbances, are given in table A at the end of the report.

The values of m were formerly computed with the moment of inertia determined at the commencement of the survey, but as the moment of inertia of all magnets has been steadily decreasing and the necessary corrections for the change were thus becoming large by using the old value, the latest value has been adopted from the lst January 1915.

Since it was decided that the Q term in the distribution coefficient $\left(1+\frac{\mathbf{P}}{r^{2}}+\frac{Q}{r^{1}} \& c\right)^{-1}$ is not negligible with the Indian Survey magnets and is to be taken into account in the final reduction of the Horizontal Foree, the values of p and q as determined by the formula which

- Tide Index Mrp No. 16.
is given in page 5 of the Narrative Report for 1908-09 are now used for the distribution coefficient instead of the approximate expression $1-\frac{\mathrm{P}}{\mathrm{r}^{2}}$ formerly used in the computation of $\frac{\mathrm{m}}{\mathrm{H}}$.

The values of the moment of inertia and the distribution coefficient, corrected as above, have been used to determine the values of the Horizontal Force given in table A at the end of this report; consequently the values in this table cannot be compared with the values published in previous years.

The final reduction of the observations in Horizontal Force at all repeat and field stations to the selected epoch is making good progress.

The revised base line values of the Horizontal Force magnetographs of the Dehra Dunn, Barrackpore, Kodaikanal and Toungoo observatories have been computed from the Horizontal Force as determined from the finally adjusted constants of the magnets of these observatories.

The corrected monthly mean values of Horizontal Force at the above observatories have been plotted on a chart from which the lines of uniform secular variation have been derived.

The recomputation of the values of the Horizontal Force at the repeat and field stations, necessitated by the revised values of magnetic moment and distribution coefficient of the field magnets, are nearing completion.

The reduction of the Declination observations at all the repeat and field stations to the sclected epoch will very shortly be completed. Each field station with its survey number, Latitude and Longitude and value of Declination will be tabulated in the serial order in which they occur in each successive Degree Sheet, from the left hand top corner to the right hand bottom corner.

It is proposed to issue with these Declination values, tables of secular change, descriptions of all repeat and field stations and an isogonic chart. With the aid of the secular change tables and the chart the Declination at any place, at any year other than the selected epoch, may be obtained. It mill be necessary, however, to revise and extend these tables from time to time, as additional data derived from future observations at repeat stations become a vailable, as it is not possible to predict to what extent the secular change might vary a few years hence. It would appear, since the secular change has not altered more than a minute in the last 10 years, that no very large change is likely to occur in the next few years and the tables can be used for all practical purposes until they are revised in 1919-20 when observations will be taken again at repeat stations.
3. Proyramme for 1916-1\%-During the ensuing field season work will be limited to comparisons of instruments at the observatories by the officer in charge of the party.

All the members of the party will be employed throughont the year on the reduction of the surver to the selected epoch.
II.-The Observatories in 1915-16.

A.-Dehra Dun Observatory.

1. The observatory was in charge of the magnetic observer Babu Shri Dhar up to the 22 nd December 1915, when he was relieved by Babu Abdul Majid who was placed temporarily in charge until the return of Babu Shri Dhar from medical leave on the 22nd September 1916.

The Horizontal Force and Declination magnetographs have worked satisfactorily during the year. The Vertical Force instrument has behaved as well as could be expected of these instruments and it was not necessary therefore to replace it by another spare instrument as was intended last year. The burner of the lamp of this instrument was altered by the Mathematical Instrument Office, Calcutta, and the lamp now burns satisfactorily.

After repairs to the underground observatory, carried ont in 1912, to prevent the repetition of inundations during the rainy season, the walls of the observatory withstool the test of the monsoons up to last year; but unfortunately during the heavy rain in Angust this year the observatory began to leak and in the course of a few days the water rose almost three feet in the passage round the room and flowed over the $1 \frac{1}{2}$-foot wall across the doorway. As it was feared that the instruments might be swamped and to avoid any risk of injury to them, the wall at the doorway was raised to a height of about 4 feet.

The boulder trench round the observatory is connected by a drain pipe to carry off the accumulation of any subsoil water in it, to a large open pit which had been designed for the purpose outside the observatory, and the passage round the room of the observatory is simi-
larly connected to carry off any water collected in it to a masonry well; but the undersoil water had percolated into the pit and well at the same time that it entered the observatory and the water in each was at the same level.

Coolies were employed, night and day for about a fortnight, in bailing water out of the passage, drawing it up by a charsa (large leather bowl-shaped bucket) from the well and pumping it up from the pit at the rate of 250,1200 and 500 gallons per hour respectively; but in spite of this the water continued to remain at the same level for three days, after which it gradually decreased and the passage pit and well were finally drained.

The settling down of the water was due more likely to a natural subsidence of the subsoil water on the cessation of raiu in the hills than to the effect of bailing and pumping.

The outer walls of the underground observatory have suffered much from the frequent pressure of the subsoil water which percolates through the walls and plaster. After the subsidence of the water it was noticed that the plastering in the passage on the north side of the room had bulged out and cracked for more than half the length of the wall and a leak was also discovered under the door sill at the entrance to the underground room.

Although precautions might be taken by freshly plastering the walls of the observatory there is still a fear of further inundations as the walls are already weakened by the constant penetration of water during the rains. The safety of the observatory and instruments during the rainy season is therefore a problem which will require careful attention at an early date.
2. Mean values of the Declination and H.F. constants.-The table below gives the mean monthly values of magnetic collimation, the distribution constants $\mathrm{P}_{1 \cdot 2}$ and $\mathrm{P}_{2 \cdot 3}$ as obtained directly from the deflection observations and the accepted values of p and q used in determining the values of the revised distribution factor. The values of m are also given, corrected for revised distribution and change in the moment of inertia. These revised values of m are used in the computations for 1915 and are derived from the vibration observations as determined with the chronograph.

Mean values of the Constants of Magnet No. 17 in 1915.

3. Mean base line values.- The table below gives the mean monthly observed and accepted values of the declination and horizontal force base lines: the accepted values have been used to compute the values of these elements for 1915. The H. F. base lines have been derivel from H as determined with the present revised values of the moment of inertia and distribution coefficient.

Base line values of Magnetographs in 1915.

4. The menn scale values and temperature range.- The mean scale values for 1915 for an ordinate of $1 / 25$ inch are :- Horizontal Force $4 \cdot 45$ gammas.

Declination $\quad 1 \cdot 03$ minutes.
Vertical Force $4 \cdot 84$ to $6 \cdot 29$ gammas.
The mean temperature throughout the year was $27^{\circ} \cdot 0 \mathrm{C}$. The temperature of reduction is $27^{\circ} \cdot 0 \mathrm{C}$.
5. Mean monthly ralues and secular change.- The following table shows the monthly mean values of the magnetic elements for $1914-15$ and the secular changes for that period: these secular changes are deduced from the valnes of \mathbf{H} as corrected for the changes in the moment. of inertia and the revised distribution coefficient.

Seoular changes at Dehra Dün in 1914-15.

Movtrs.	Horizontal Force. 3: mon C. G. S. +			Declivation E. $2^{3}+$			$\stackrel{\text { DIP }}{\text { N. }} 4^{\prime}+$			Vertical Force -32000 C. G.S. +		
	1914.	1915.	Seculur chnnge.	1914.	1915.	Secnlar change.	1914.	1015.	Secular change.	1014.	1916.	Senular change.
	γ	γ	γ		,		,	,	,	γ	γ	γ
Jannars	145	10.5	- 42	$20 \cdot 3$	$17 \cdot 1$	$-3 \cdot 2$	$19 \cdot 4$	$26 \cdot 8$	$+7 \cdot 4$	373	471	$+98$
Febranary	14.3	143	45	$20 \cdot 2$	$16 \cdot 9$	$3 \cdot 3$	19.9	276	$7 \cdot 7$	384	484	100
Harcb	145	(1)1	44	$19 \cdot 9$	$16 \cdot 7$	$3 \cdot 2$	$20 \cdot 4$	242	$7 \cdot 8$	390	493	103
April	139	97	± 2	$19 \cdot 6$	$16 \cdot 4$	$3 \cdot 2$	21.7	28.8	7-1	409	501	92
May	14i	93	83	$19 \cdot 0$	15.8	32	220	293	7.3	421	507	86
Jone	$1+i$	$\bigcirc 0$	bis	168	15.7	$3 \cdot 1$	23.6	$30 \cdot 4$	78	432	515	83
Joly	1411	X 6	$5 \pm$	14.6	$1 \bar{n} \cdot 3$	$7 \cdot 3$	23.2	$30 \cdot 9$	$7 \cdot 7$	438	531	93
Angost	130	80	$\therefore 0$	18.6	$15 \cdot 0$	36	$24 \cdot 1$	$31 \cdot 6$	7-5	$44 \overline{3}$	538	93
scprember	126	7	5 +	14.5	$14 \cdot 7$	38		121	7.1	458	540	92
Octoher	$1 \because 1$	6:3	58	17.9	14'5	34	$25 \cdot 2$	331	$7 \cdot 9$	457	549	92
Norembier	112	52	bi)	$17 \cdot 6$	13.9	$3 \cdot 7$	257	$34 \cdot 4$	$8 \cdot 7$	458	563	105
ileremiler	112	63	49	17.1	13 n	36	2i 0	$34 \cdot 4$	5.4	463	674	111
Mears	13*	+3	- 01	188	15.5	$-3 \cdot 3$	229	306	$+77$	427	62\%	$+95$

B.-Barrackpore Observatory.

1. The observatory was closed on the 25th April 1915, but as the magnetic results at the observatory were given only up to the end of the year 1914 in last season's Records, it remains now to give them up to the time the observatory was closed.
2. Mean raiues of the declination and H. F. constants.-The following table gives the monthly mean values of the magnetic collimation, and the revised distribution constants and moment m , as explained in para 2 of the note on the Dehra Dun Observatory. These revised values of m were used in the computations for 1915.

Mean values of the constants of magnet No. 20 in 1915.

3. Mean vulues of hase lines.-The table below gives the mean monthly observed and accepted base line values of the Declination and H. F. instruments: the accepted values have been used to compute the values of these elements for 1915. The H. F. base lines are derived from H as determined with the present revised values of the moment of inertia and distribution coefficients.

Base lime ralues of Magnetoyranhs in 1910.

4. Mean scalr valucs and temporature ranye. -The mean scale values for the year for an ordinate of $1 / 25$ inch are :-

$$
\begin{array}{ll}
\text { Horizontal Force } 4.86 \text { gammas. } \\
\text { Declination } & 1.03 \text { minutes. } \\
\text { Vertical Force } & 4 \cdot 43 \text { gammas. }
\end{array}
$$

The mean temperature for the 4 months, January to April, was $31^{\circ} \cdot 7$ C., with maximum and minimum values of $33^{\circ} \cdot 1 \mathrm{C}$. to $31^{\circ} \cdot 1 \mathrm{C}$. The temperature of reduction is $31^{\circ} \cdot 0 \mathrm{C}$.
5. Mean monthly values and secular chanyes.-The following table gives the monthly mean values of the masnetic elements for 1911 and 1915 and the secular changes for that period: these sccular change values are deduced from the values of H as corrected for the changes in the moment of inertia and the revised distribution coefficients.

Secular changes at Barrackpore in 1914-15.

Months.		Horirontal Force - 37000 C.G.S. +			Declination E. $0^{\circ}+$			$\stackrel{\mathrm{D}_{1 \mathbf{P}}}{\mathbf{N 0}}+$			Vertical Force -22000 C.G.S. +		
		1814.	1915.	Secular change.	1014.	1015.	Seoular change.	191\$.	1915.	Secular change.	1014.	1915.	Secular change.
		γ	γ	$\boldsymbol{\gamma}$,	,		,		,	γ	γ	7
Jonmary	\cdots	393	398	+ 5	$34 \cdot 6$	$29 \cdot 0$	$-5 \cdot 6$	$56 \cdot 8$	$61 \cdot 3$	$+4 \cdot 5$	421	489	$+68$
February	...	398	396	-2	$34 \cdot 1$	$28 \cdot 6$	55	$57 \cdot 2$	$61 \cdot 7$	$4 \cdot 5$	430	496	66
March	...	396	398	$+2$	338	$28 \cdot 3$	$5 \cdot 5$	$57 \cdot 4$	620	$4 \cdot 6$	431	501	70
April	...	393	401	$+8$	$33 \cdot 4$	$27 \cdot 7$	57	58.0	$62 \cdot 2$	$4 \cdot 2$	438	506	68
May	...	408	\cdots	'.	$32 \cdot 8$	\cdots	\cdots	$58 \cdot 1$	\cdots	* ${ }^{\text {a }}$	449	\cdots	\cdots
Jane	\cdots	415	\cdots	. ${ }^{\text {a }}$	$32 \cdot 4$	\cdots	. ${ }^{\text {a }}$	587	\cdots	\ldots	462	\cdots	\cdots
Jaly	\cdots	403	\cdots	-•	$32 \cdot 0$	\cdots	\cdots	$59 \cdot 1$	\cdots	*.	461	'•	\cdots
Augnst	\cdots	399	\cdots	\cdots	$31 \cdot 5$	\cdots	'•'	596	\cdots	. ${ }^{\text {a }}$	466	\cdots	\cdots
September	...	397	-	\cdots	$31 \cdot 1$...	\cdots	$60 \cdot 2$	\cdots	\cdots	473	\cdots	\cdots
October	...	399	\cdots	\cdots	$30 \cdot 7$		'.	$60 \cdot 3$	\ldots	\cdots	476	**	'.
November	\cdots	401	\cdots	...	$30 \cdot 2$	\cdots	**	$61 \cdot 0$	489	**	\cdots
December	\cdots	406	\cdots	\cdots	$29 \cdot 6$	\cdots	\cdots	$60 \cdot 8$	\ldots	\cdots	488	**	**
Means	\cdots	401	\cdots	\cdots	$32 \cdot 2$...	\cdots	589	\cdots	.	457	\cdots	\ldots

C.-Toungoo Observatory.

1. Mr. B. B. Shome held charge of the observatory up to the 26th January 1916 when he was relieved by Mr. K. N. Mukerji, formerly magnetic observer at the Barrackpore observatory. Mr. Shome was transferred to the head quarters office of the party at Dehra Dun.

The declination, H. F. and V. F. magnetographs have worked well throughout the year.
2. Mean values of declination and H.F. constants.-The table below gives the mean monthly values of magnetic collimation, and the revised distribution constants and moment m , as explained in para 2 of the note on the Dehra Dun observatory: These revised values of m were used in the computations for 1915.

The fall of the moment of the magnet continued to be $1 \cdot 0$ C.G.S. as in the previous year which is higher than the average normal fall of the other observatory magnets during a year.

Mean values of the Constants of Magnet No. 19A in 1915.

Montis.		Declination congtants.	h. F. Constants.						Remaris,
		$\begin{gathered} \text { Mean } \\ \text { magretic } \\ \text { collimation. } \end{gathered}$	1itithibition factors.				mean talueg ofm.		
			$\mathrm{P}_{1.2}$	$\mathrm{P}_{2.3}$	Accepted values.		Monthly means.	$\begin{array}{\|c\|} \hline \text { Accentell } \\ \text { mi. } \end{array}$	
January	...	-10 ${ }^{\prime \prime}$	829	$9 \cdot 12$			877-31	877.31	
Februaty		- 952	$8 \cdot 27$	$9 \cdot 13$			87731	$877 \cdot 31$	
							$877 \cdot 31$	$877 \cdot 31$	To Murch 13th.
March		-9 56	$8 \cdot 28$	8.85			876.91	87691	Fromi 16th March.
April	\cdots	-958	$8 \cdot 35$	902			876.87	876.87	
May	\ldots	-951	$8 \cdot 27$	$9 \cdot 13$			$876 \cdot 71$	$876 \cdot 71$	
June	...	- 954	$8 \cdot 9$	8.82	$\bar{\square}$	10	87669	$876 \cdot 69$	
July	...	-951	$8 \cdot 29$	909			87660	87660	
Augnst	...	-957	$8 \cdot 35$	$9 \cdot 10$			876.48	87648	
September	...	-104	$8 \cdot 35$	909			876.49	87649	
October	...	- 966	$8 \cdot 37$	$9 \cdot 03$			876.36	$876 \cdot 36$	
November	...	-954	$8 \cdot 35$	897			876.31	876.31	
December	...	-959	833	8.93			876.16	87616	To December 91 h .
							876.00	876.00	From December 11 th

3. Mean base line values.-The follqwing table gives the mean monthly observed and accepted base line values of the Declination and H F. magnetographs: the accepted values have been used to compute the values of these elements for 1915.

The H. F. base lines are derived from H as determined with the present revised values of the moment of inertia and distribution coefficients of magnet No. 19A and are not reduced as formerly to the value of magnet No. 19 which was in use in the earlier years of the observatory.

Base line values of Magnetographs in 1910.

Montes.	declination.		Horizontal force.		Months.	Declivation.		Horizorial force.	
	$\begin{gathered} \text { Mean ralue } \\ \text { Base line. } \end{gathered}$	Base line aecopted.	$\begin{gathered} \text { Mean ralue } \\ \text { Base line. } \end{gathered}$	Base line nccepted.		$\begin{array}{c\|} \text { Manu value } \\ \text { of } \\ \text { Base line. } \end{array}$	Base line accepted.	$\begin{gathered} \text { Mean palue } \\ \text { Race line. } \end{gathered}$	Beae line accepted.
	- ,		C. G. S	C. G. S.			- ,	C.G.S.	C. S S
Januery	051.2	$)$	- 38633	-381833	July . .	$05 \% \cdot 3$	$052 \cdot 3$	-38627	-38627
February	$051 \cdot 1$		-38639	38633	August	0528	$\bigcirc 528$	- 38624	- 38624
Murch	0511	\} $051 \cdot 1$	- 38637 $\cdot 38623$	\} 38630	September .	0529	$052 \cdot 9$	-38627	38627
A pril	$051 \cdot 1$	J	-38626	-39626	October	0532	0532	- 38623	- 38623
Mey	0517	051.7	- 38681	- 38631	Noveniber	$053 \cdot 2$	O $53 \cdot 2$	- 38622	38622
June	$051 \cdot 9$	051.9	386:31	-38:31	December	053.2	0532	- 38616	- 33616

4. Mean scale values and temperature range.-The mean scale values for 1915 for an ordinate of $1 / 25$ inch are :- Horizontal Force $5 \cdot 39$ gammas.

Declination $1 \cdot 04$ minutes.
Vertical Force $5 \cdot(+2$ to $6 \cdot 23$ gammas.
The mean temperature for the year was $89^{\circ} \cdot \boldsymbol{2}$ Fahr. with maximum and minimum monthly values of $89^{\circ} .7$ Fahr. to $88^{\circ} 99$ Fahr. The temperature of reduction is $89^{\circ} .0$ Fahr.
5. Mean monthly ralues and secular change.-The table below gives the mean monthly values of the magnetic elements for 1914 and 1915 and the secular change for that period : these secular change values are deduced from the values of H as corrected for changes in the moment of inertia and the revised distribution coefficients. The values of H in this table are all in terms of marnet No. 19 A.

Secular changes at Toungoo in 1914-15.

Montus.	Hombontal Fonce -3нин C. ©. S. +			$\underset{0^{\circ}}{\text { Declinatios. }}$			$\text { N. }{ }_{23^{2}}^{\text {Dir }}+$			Veitical Fohef. 1800 C. G. S. +		
	1914.	1915.	Secular change.	$\begin{gathered} 1014 . \\ \text { E. } \end{gathered}$	$\begin{gathered} 1915 . \\ \mathrm{W} \end{gathered}$	Secular chunge.	1014.	1015.	Secular chauge.		1915.	Secular chauge.
	γ	γ	γ	,	,	,	,	,	,	γ	γ	γ
January	985	1000	$+15$	$5 \cdot 0$	0.5	$-5 \cdot 5$	5'7	$6 \cdot 7$	+1.0	624	C4. 1	+20
February	979	1003	24	$4 \cdot 4$	$1 \cdot 0$	5.4	6.8	$6 \cdot 8$	$1 \cdot 0$	623	647	24
Minch	98.1	1004	23	$4 \cdot 1$	13	$6 \cdot 4$	$5 \cdot 1$	6.9	1.8	615	648	33
April	979	1002	23	$3 \cdot 6$	1.6	$5 \cdot 2$	60	$7 \cdot 0$	1.0	626	648	23
May	986	1009	23	a. 2	$2 \cdot 1$	53	$5 \cdot 9$	$6 \cdot 8$	09	628	649	21
June	985	1003	18	20	2.4	$5 \cdot 3$	$5 \cdot 7$	$7 \cdot 7$	20	624	659	35
Juls	986	1005	19	$2 \cdot 5$	$3 \cdot 0$	$5 \cdot 5$	5.8	$7 \cdot 2$	$1 \cdot 4$	626	653	27
August.	980	1005	25	2.0	$3 \cdot 9$	$6 \cdot 9$	$6 \cdot 1$	$7 \cdot 2$	$1 \cdot 1$	628	653	25
Saptember	982	1010	28	$1 \cdot 5$	$4 \cdot 6$	6.0	$6 \cdot 1$	$7 \cdot 1$	$1 \cdot 0$	629	654	25
October.	989	1006	17	$1 \cdot 1$	$5 \cdot 1$	$6 \cdot 2$	$6 \cdot 7$	$7 \cdot 6$	0.9	640	659	19
November	991	999	8	$0 \cdot 7$	5.4	61	7'0	81	1-1	644	663	19
December	997	1010	13	$0 \cdot 1$	$6 \cdot 0$	$6 \cdot 1$	$6 \cdot 7$	77	10	643	6132	19
Means	885	1005	+29	$2 \cdot 6$	$3 \cdot 1$	$-5 \cdot 7$	$6 \cdot 1$	$7 \cdot 2$	+1•1	629	653	+ 24

D.-Kodaikanal Observatory.

1. Magnetic observer Ramasvami Ayyangar held charge of the observatory during the year.

Thanks are due to the Director of the Solar Physics Observatory for the cordial assistance in all matters connected with the magnetic work.

The magnetographs worked satisfactorily throughout the year. The chuck of the maguet used with the observatory magnetometer had become worn and lost its grip: the spare chuck of another magnet was substituted on 25th January until the original chuck was repaired and used a month later. The temporary chuck was heavier and it was necessary to take a moment of inertia experiment with it as well as with the original chuck after repair, so as to preserve a continuity of record. No change in the moment of inertia was appreciable in the magnet when the repaired chuck was used.

During the inspection of the observatory the torsion head of the Declination magnetograph was turned on account of the gradual shift of the trace due to secular change.
2. Mean values of Declinution and $H . F$. constants.-'The table below gives the mean monthly values of the magnetic collimation, and the revised distribution constants and moment m, as explained in para. Z of the note on the Dehra Dinn Observatory. These revised values of m were used in the computations for 1915 and are derived from the vibration observations as determined with the chronograph.

Mean values of the constants of magnet No. 16 in 1915.

3. Mean buse line ralues.-The following table gives the mean monthly observed and accepted base line values of the H. F. and Declination magnetographs: the accepted values have been userl to compute the values of these elements for l915. The H.F. base line values have been derived from H as determined with the present revised values of the moment of inertia and distribution coefficients.

Base line values of Magnetographs in 1915.

91.sing.	1.ferimitum.		itorizostal furce,		Montrs.	Declination.		Horizontal forcr.	
	$\begin{aligned} & \text { Menn value } \\ & \text { Mace liup, } \end{aligned}$	$\begin{aligned} & \text { Pase line } \\ & \text { Hocepterl } \end{aligned}$	$\begin{aligned} & \text { Mean rnluel } \\ & \text {; base Ine. } \end{aligned}$	Race line accerted.		$\begin{aligned} & \text { Mean value } \\ & \text { Base line. } \end{aligned}$	Buge line nccepter	$\begin{gathered} \text { Mean value } \\ \text { haze !ine. } \end{gathered}$	nase lino acceptel.
			C. G.S.	C. G. S.				C. G. S.	C. G.S.
Jallumit	157		. 37371	$\cdot 37371$	July	157.3		37370	-37370
Fehrunty	1 1 \% 7		. 37364	-37368	August	$157 \cdot 5$	12	-37371	$\cdot 37371$
March	1 \% 4	客	-37369	-37369	September	157.7	ir	-37370	37370
April	1877	-	-37372	-37372	October	157.4		37370	-37370
M. ${ }^{\text {y }}$	1576		-37373	- 37373	November	$1 \quad 57.7$		$\cdot 37367$	-37367
June -	187		-37373	$\cdot 3.3773$	December	15.74		-37363	-37363

4. Mean scale values und temperature range.-The mean scale values for 1915 for an ordinate of $1 / 25$ inch are :-

Horizontal Force	$5 \cdot 90$ gammas.
Declination	$1 \cdot 03$ minutes.
Vertical Force	$5 \cdot 18$ to $5 \cdot 58$ gammas.

The mean temperature for the year was $18^{\circ} .5 \mathrm{C}$ with maximum and minimum monthly values of $19^{\circ} \cdot 0 \mathrm{C}$ to $17^{\circ} \cdot 5 \mathrm{C}$. The temperature of reduction is $19^{\circ} \cdot 0 \mathrm{C}$.
5. Mean monthly ralues and secular change.- The table below gives the mean monthly values of the magnetic elements for 1914 and 1915 and the secular changes for that period: the secular change values are deduced from the values of H as corrected for the changes in the moment of inertia and the revised distribution coefficients.

Secular changes at Kodaikünal in 1914-15.

Montes.		Homizonial Fonce $\cdot 37000$ C. G. S. +			$\begin{gathered} \text { Declination } \\ \text { W. } 1^{\circ}+ \end{gathered}$			$\mathbf{N}_{1}^{\mathbf{D}_{1} \mathbf{4}} \mathbf{4}^{\circ}+$			Ventical Force $\cdot 02000$ C. G. S. +		
		1014.	1016.	Secular change.	1914.	1915.	Secular chauge.	1914.	1915.	Secular change.	1014.	1915.	Secular chane.
		$\boldsymbol{\gamma}$	γ	γ	,	,	,	,	,	,	γ	7	7
Junuery	...	599	608	$+9$	14.5	$19 \cdot 8$	$+5 \cdot 3$	82	$13 \cdot 7$	$+5 \cdot 5$	719	781	+ 62
February	\cdots	606	606	0	$14 \cdot 9$	$20 \cdot 3$	$6 \cdot 4$	$8 \cdot 5$	$15 \cdot 0$	$6 \cdot 5$	723	794	71
Maroli		605	611	6	$16 \cdot 2$	$20 \cdot 6$	$5 \cdot 4$	$9 \cdot 1$	$15 \cdot 8$	$6 \cdot 7$	730	804	74
A pril	\ldots	604	617	13	15-7	$21 \cdot 0$	$5 \cdot 3$	$9 \cdot 8$	$15 \cdot 9$	$6 \cdot 1$	737	805	68
May	\cdots	608	618	10	$16 \cdot 3$	$21 \cdot 6$	$5 \cdot 3$	$10 \cdot 5$	$16 \cdot 7$	$6 \cdot 2$	7 ± 5	814	69
June	\cdots	602	610	8	$16 \cdot 7$	$22 \cdot 2$	$6 \cdot 5$	$11 \cdot 7$	17-2	$5 \cdot 5$	758	818	60
July	\cdots	602	610	8	$17 \cdot 1$	$22 \cdot 6$	$5 \cdot 5$	$12 \cdot 0$	$17 \cdot 9$	$5 \cdot 9$	761	827	66
August	\cdots	600	619	$\downarrow 9$	17.5	$23 \cdot 0$	5•5	$12 \cdot 5$	$17 \cdot 2$	4•7	767	820	63
September	\cdots	607	623	16	18-3	$23 \cdot 4$	$5 \cdot 1$	$12 \cdot 5$	179	$5 \cdot 4$	767	827	60
October	\ldots	605	620	16	19.3	$23 \cdot 8$	$4 \cdot 6$	12.7	$18 \cdot 1$	$5 \cdot 4$	769	829	60
November	.	6 n 2	609	7	$19 \cdot 8$	24.2	$4 \cdot 4$	$13 \cdot 7$	$19 \cdot 2$	$5 \cdot 5$	780	841	61
December	. ${ }^{\text {a }}$	610	620	10	$20 \cdot 2$	$25 \cdot 0$	$4 \cdot 8$	13.5	$19 \cdot 1$	$5 \cdot 6$	778	841	63
Means	...	604	614	$+10$	$17 \cdot 1$	$22 \cdot 3$	+ $5 \cdot 2$	11.2	$17 \cdot 0$	$+5.8$	763	817	$+64$

6. Transfer of the Kodarkinal Observatory.-It has been deemed advisable to place the Kodaikanal Observatory under the control of the Meteorological Department, for a better supervision of the work of the observatory than is possible at so great a distance from the Survey Head Quarters at Dehra Dun. With the approval of the Director General of Observatories and the sanction of the Government of India, the magnetic observatory and the observatory staff were transferred to the Meteorological Department on the lst Augrust 1916.

It has beeu arranged that the Director of the Kodaikanal Observatory will continue to send the periodical returns of the magnetic observations as usual, in original and duplicate, to the Officer in charge of No. 18 Party for the computation of the observations and for record.
III.-Tabies of Results.

A-Mean values of the magnetic elements at observatories in 1915.

C．－Hourly Means of the Declination at Dehra Dun in 1915，determined from all available days．Declination $=\boldsymbol{E} . \mathbf{Z}^{\circ}+$ tabular quantity

	－ロッ 	$\stackrel{\pi}{i n}$		－
兑		$\stackrel{\underset{\sim}{\dot{\sim}}}{ }$		－
®		$\underset{\sim}{i}$		$\stackrel{\circ}{i}$
\％		$\stackrel{\text { F }}{i=}$		$\stackrel{+}{\square}$
む		$\begin{aligned} & \dot{B} \\ & \ddot{9} \end{aligned}$		$\stackrel{9}{\text { in }}$
$\stackrel{\square}{\circ}$		$\begin{aligned} & 0 \\ & \ddot{0} \end{aligned}$		$\stackrel{0}{\bullet}$
$\stackrel{\Im}{-}$		$\begin{aligned} & 10 \\ & i 0 \end{aligned}$		$\stackrel{7}{\square}$
$\stackrel{\square}{\square}$		$\left\lvert\, \begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}\right.$		－
$\stackrel{\rightharpoonup}{\sim}$	サ¢	$\underset{\underset{i}{2}}{\stackrel{\rightharpoonup}{2}}$		－
\pm		$\stackrel{i}{i}$		$\stackrel{+}{\square}$
9		$\underset{i}{i}$		\bullet
\pm		$\stackrel{\because}{\ddagger}$		号
$\stackrel{\square}{\sim}$		$\stackrel{\ominus}{i}$	orne erver 	－91
$\begin{aligned} & \text { 厄 } \\ & \stackrel{\circ}{Z} \end{aligned}$		$\begin{aligned} & \circ \\ & \stackrel{-}{\ddagger} \end{aligned}$	トのन のO「 	$\stackrel{+}{ \pm}$
\ddagger	 	$\stackrel{\hat{\mathrm{G}}}{ }$		$\stackrel{+}{\square}$
\bigcirc		$\begin{aligned} & \stackrel{0}{i} \\ & i- \end{aligned}$		$\stackrel{+}{\bullet}$
\bigcirc		$\begin{aligned} & \text { ẹ } \\ & \dot{\sim} \end{aligned}$		$\stackrel{\infty}{\text { ¢ }}$
∞		$\begin{aligned} & \stackrel{+}{0} \\ & \stackrel{1}{2} \end{aligned}$		$\stackrel{\square}{\infty}$
\cdots		$\begin{aligned} & 0 \\ & i- \end{aligned}$		$\stackrel{+}{\square}$
\bigcirc		$\begin{aligned} & N \\ & i \\ & \underset{\sim}{2} \end{aligned}$		$\stackrel{¢}{-}$
\cdots		$\stackrel{?}{\ddot{n}}$	Nour ？	－189
\rightarrow		$\begin{aligned} & \infty \\ & \vdots \\ & i \end{aligned}$	$\infty \infty \rightarrow \infty$－ 	$\stackrel{-}{\circ}$
\cdots			aros one空	－
N		$\begin{aligned} & 0 \\ & i \underline{i n} \end{aligned}$		\bigcirc
\square		㫛	ontur	$\stackrel{\square}{i}$
号		$\begin{aligned} & \infty \\ & \underset{-}{\infty} \end{aligned}$		in $i-$
咢				碞

	$\overrightarrow{1}$	$\begin{array}{cc}\text { nomatan } \\ 111 & 11+\end{array}$	\cdots
	9		$\stackrel{+}{1}$
	\cdots	$\begin{array}{cccc} 0 & m & 0 & +\infty \\ 111 & 1 & 1 \end{array}$	$\stackrel{1}{1}$
	1	6ッチー 0 サー 111111	\cdots
	10	$\begin{array}{llll} \text { NON } \\ 111 & 111 \end{array}$	－
－＋1－N Nom	1	cion Oncor	\cdots
	$\begin{gathered} 10 \\ 1 \end{gathered}$	$\begin{array}{lll} 0<\theta & 0 \infty & 0 \\ 11 & 1 & 1 \end{array} 11$	1
	$\begin{gathered} \infty \\ 1 \end{gathered}$		0
	\bigcirc		$\stackrel{+}{+}$
	$\stackrel{+}{+}$		$\stackrel{-}{+}$
$\begin{aligned} 2+\theta & +\infty+ \\ +++ & +++ \end{aligned}$	σ $+$		$\xrightarrow{10}$
$\begin{aligned} \cos = & \vdots \infty \infty \\ +++ & +++ \end{aligned}$	$\begin{aligned} & 9 \\ & + \end{aligned}$	$\begin{array}{ll} \infty \rightarrow \infty \\ +\infty & \infty+ \pm \\ +++++ \end{array}$	$\stackrel{+}{*}$
	σ	$\begin{array}{ll} \text { ポーロ ザホ } \\ +++ & +++ \end{array}$	$\stackrel{+}{\sim}$
$\begin{aligned} \infty=1- & +\infty \infty \\ +++ & +++ \end{aligned}$	ω +	$\begin{aligned} & \infty=+\infty \infty \\ & +++\quad++1 \end{aligned}$	\cdots
	$\stackrel{+}{+}$	$\begin{array}{ll} N \sim+2 & \infty-1 \\ ++1 & +11 \end{array}$	$\stackrel{7}{1}$
	$\stackrel{\square}{1}$	$\left.\begin{array}{cccc} 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 \end{array} \right\rvert\, \begin{aligned} & 1 \end{aligned}$	－
$\begin{array}{rlr}=300 & =003 \\ +11 & 11+\end{array}$	$\overrightarrow{1}$	$$	∞
	$\stackrel{+}{+}$		$\stackrel{+}{1}$
$\mathrm{rarar}_{+}+$	＋	$\begin{array}{ccc} -10 & 11+ \\ 11 & 1 & 0 \end{array}$	\bigcirc
$\xrightarrow[+-11]{+-1}$	0	$\overrightarrow{1 F} 101+$	$\xrightarrow{-1}$
	$\overrightarrow{1}$	$\begin{array}{cc} \infty=N & +\infty \\ 1 & 11+ \end{array}$	\cdots
－	7	$\begin{array}{llll} +1 & 0 & 1 & +\pi \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{array}$	9
	$\overline{1}$	$\begin{array}{llll} & 0 & 10 & 0 \\ 1 & 1 & 1 & 1 \\ 1 & 1 \end{array}$	$\stackrel{1}{1}$
$\begin{array}{llllll} 2 & 0 & 0 & 0 & 0 & 0 \\ i & 1 & 1 & 1 & 1 & 1 \end{array}$	$\underset{1}{n}$	$\begin{array}{cccc} \infty & 0 & 0 & +i n \\ 1 & 1 & 1 & 1++ \end{array}$	$\stackrel{1}{1}$
	\cdots	$\begin{array}{lll} \text { c } 100 & \text { nNos } \\ 111 & 11+ \end{array}$	1
	$\stackrel{\text { 冎 }}{\substack{0}}$		号

胥	遌		谷		N
	家		边		\％
	¢		品		呇
	주		品		尔
	ล		尔		－
	8		$\stackrel{\text { B }}{0}$		呂
	$\stackrel{\sim}{\sim}$		［		品
I	$\stackrel{\sim}{\sim}$		\％		吕
	\pm		\％		苍
	\bigcirc		\％	枵发吕－管	\％
	$\xrightarrow{10}$		\％	页念石 或管	층
ε	\pm		\％		0
$\frac{10}{0}$	$\stackrel{\sim}{\sim}$		に		$\stackrel{\circ}{6}$
$\begin{aligned} & -\leq \\ & \leq \end{aligned}$	\％		$\frac{80}{10}$		尔
I	Z		$\stackrel{7}{3}$		$\stackrel{\square}{10}$
$\stackrel{\rightharpoonup}{\theta}$	\bigcirc	－	$\stackrel{\infty}{0}$		5
$\stackrel{\rightharpoonup}{\square}$	\bigcirc		\％		$\stackrel{\infty}{6}$
$\underset{\sim}{\underset{\sim}{s}}$	∞		哃		右
$\stackrel{i}{2}$	－		2is		回
:	ω		宕		$\stackrel{\%}{8}$
N	\therefore		范		손
$\begin{aligned} & c \dot{j} \\ & c \end{aligned}$	＋		渷	劳吅昭 管吉志	\％
\therefore	∞		茄	吉三合管吉吉	员
4	$\stackrel{ }{ }$		륭		\％
$\stackrel{5}{5}$	－		落		8
$\begin{aligned} & 0 \\ & 0 \end{aligned}$	容		閣		\％
3	咢		号		$\stackrel{\text { \％}}{\substack{\text { ¢ } \\ \text { ¢ }}}$

Diurnal Inequality of the Vertical Force at Dehra Dun in 1915，deduced fiom the above Table．

	∞ +		$\stackrel{+}{+}$
	∞ +	$\begin{array}{ll} \text { is tio } & \omega+\text { on } \\ +++ & +++ \end{array}$	$\stackrel{+}{+}$
	$+$		10 +
Nonctosat	$\begin{aligned} & \text { N } \\ & + \end{aligned}$	$\begin{array}{ll} \text { Lefin } & \text { secsu } \\ +++ & +++ \end{array}$	$\stackrel{+}{+}$
	$\begin{gathered} \text { N } \\ + \end{gathered}$	$\begin{array}{ll} +\infty+ & +N+ \\ +++ & +++ \end{array}$	+ +
	$\begin{aligned} & \text { N } \\ & + \end{aligned}$	のnt +++ +++	N +
$\begin{array}{ll} -1+-1 & 0-r \\ +++ & ++ \end{array}$	$\stackrel{-}{+}$	$\begin{array}{ll} -\infty \infty & \infty-\square \\ +++ & +++ \end{array}$	－ +
$\begin{gathered} \therefore=0 \mathrm{~N}+100 \\ +1 \end{gathered}$	$\stackrel{+}{+}$		$\stackrel{+}{+}$
	$\stackrel{+}{+}$	$\begin{array}{cr}\text { N－H } & \text { O－N } \\ +++ & 1+\end{array}$	$+$
$\begin{array}{ll}\text { Ho } & \text { mor } \\ ++ & 1\end{array}$	$\stackrel{+}{+}$	$\begin{array}{rrrr}\text { OOH } \\ 1 & 111\end{array}$	$\stackrel{0}{*}$
	$\stackrel{1}{0}$	$\begin{array}{cccc}0+\infty & \text { Oner } \\ 111 & 1 & 1 & 1\end{array}$	$\stackrel{\sim}{1}$
	10	$\underset{1}{-0} \frac{0}{1} \underset{1}{4}$	$\stackrel{\text { ® }}{\sim}$
$\begin{array}{rlllll} 10 & +1 & 0 & \infty & 0 \\ 1 & 1 & 1 & 1 & 1 \end{array}$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	$\stackrel{4}{4} \frac{1}{1} \frac{\pi}{1} \frac{0}{1}$	$\stackrel{10}{1}$
	$\begin{gathered} \infty \\ 1 \end{gathered}$	$=\frac{\infty}{1} \frac{\infty}{1} \frac{\infty}{1} \frac{10}{1}$	$\stackrel{\square}{1}$
$\begin{array}{rrrr} \hline & 0 & +10 & +0 \\ 1 & 1 & 1 & 1 \end{array} 110$	I	$\infty \underset{\sim}{\infty} \underset{1}{1}$	7
－ran $+1+\infty$ +11	$\stackrel{+}{+}$	$\begin{array}{ll}-N 0 & 2000 \\ +11 & 111\end{array}$	\pm
NOE + + +	$\stackrel{+}{+}$	$\begin{array}{ll}\text {－ャー } & \text { のハく } \\ +++ & +++\end{array}$	$\stackrel{+}{+}$
$\begin{array}{cc} -\infty & \text { ONH } \\ +\quad+\quad+++ \end{array}$	$\begin{aligned} & \infty \\ & + \end{aligned}$	$\begin{array}{ll} \lambda \infty & \infty \\ +++ & +++ \end{array}$	＋
$\begin{array}{rrr}\text { Hom } \\ + \\ + & +++\end{array}$	$\begin{aligned} & \text { ~ } \\ & + \end{aligned}$	$\begin{array}{ll}\text { N上の } & \text { Om心 } \\ +++ \\ +++\end{array}$	∞ + +
	$\stackrel{+}{\sim}$	ササー +++ ＋＋ ＋＋＋	10 +
	${ }_{+}^{+}$	$\begin{array}{ll} \text { ッゥ }+\cdots+1 \\ +++ & +++ \end{array}$	+ +
$\begin{array}{ll}-200 & \text {＋rat } \\ + \\ + & +++\end{array}$	－ + +	$\begin{array}{ll} \text { enf }+ \text { er } \\ +++ & ++ \end{array}$	+ +
	N +		+ +
$\begin{array}{rr} \mathrm{OOON} & \text { サN } \\ + & +++ \end{array}$	$\begin{aligned} & \mathbf{N} \\ & + \end{aligned}$	$\begin{array}{ll} \text { +onis } & \text { Hof } \\ +++ & +++ \end{array}$	+ + +
	$\stackrel{\infty}{+}$	$\begin{array}{ll} \infty \infty+\infty & +\infty+ \\ +++ & +++ \end{array}$	+ + +
			碰

Hourly Means of the Dip at Dehra Dun in 1915，dplemmed from all arailable days．Dip $=$ N． $4 t^{\circ}+$ tabular quantity．

㗊		$\left\lvert\, \begin{aligned} & \hat{e} \\ & \dot{\infty} \end{aligned}\right.$		萵
或		¢	 	－
๕		$\stackrel{\stackrel{\rightharpoonup}{\infty}}{ }$		－
สิ	$-\infty 0000$ 	$\stackrel{\stackrel{\rightharpoonup}{\square}}{2}$	かんのーローに 	$\stackrel{\stackrel{\circ}{\square}}{\square}$
ลี	－ 00 －00 	$\overrightarrow{\dot{m}}$	かo 	$\stackrel{\square}{\square}$
¢		$\overrightarrow{\dot{n}}$		\cdots
9		$\underset{x}{\vec{x}}$		\cdots
\pm	－ 0 r ve 0 に合今会	$\stackrel{\rightharpoonup}{=}$	$\underset{\sim}{\hat{\sim}}$	$\stackrel{\circ}{i}$
三	 	$\dot{\theta}$		$\stackrel{\infty}{\text { ¢ }}$
\because	ars m 요 	$\left\lvert\, \begin{aligned} & \infty \\ & \dot{0} \\ & \hline \end{aligned}\right.$	呙家家 	$\stackrel{\square}{\square}$
$\underline{\square}$		$\left\lvert\, \begin{array}{l\|l} 0 \\ 0 \\ 0 \end{array}\right.$		$\stackrel{9}{9}$
\pm	いのか ○○ッ密包会			$\stackrel{\text { a }}{ }$
\cdots	 	$\begin{array}{\|l\|l\|} \hline \infty \\ \stackrel{3}{*} \end{array}$		$\stackrel{\rightharpoonup}{\text { a }}$
岩	－00 000 	$\left\lvert\, \begin{aligned} & \infty \\ & \underset{3}{\infty} \end{aligned}\right.$	erros © 91 	$\stackrel{7}{8}$
\pm	ox－-130 	$\begin{aligned} & \stackrel{\circ}{\circ} \\ & \stackrel{\ominus}{n} \end{aligned}$	 	$\stackrel{+}{\text { in }}$
Ξ		$\begin{aligned} & 0 \\ & 0 \\ & \dot{8} \end{aligned}$	 	$\stackrel{\circ}{\text { ¢ }}$
\bigcirc		$\begin{aligned} & \hline \infty \\ & \dot{n} \\ & \hline \end{aligned}$	－$\because \rightarrow+\infty$ 	$\stackrel{\text { ¢ }}{\text { ¢ }}$
∞		$\begin{aligned} & \stackrel{\rightharpoonup}{\dot{e}} \\ & \stackrel{y}{\circ} \end{aligned}$		\cdots
－		$\begin{aligned} & \stackrel{\infty}{5} \\ & \stackrel{\rightharpoonup}{2} \end{aligned}$	 	$\dot{\square}$
\bigcirc		$\begin{aligned} & \bar{\infty} \\ & \dot{e} \end{aligned}$		$\stackrel{8}{\dot{-}}$
\checkmark	$\infty<\infty<\pi=$ 	$\begin{aligned} & \infty \\ & \stackrel{\ominus}{0} \end{aligned}$		$\stackrel{\infty}{\infty}$
\bigcirc		$\stackrel{\infty}{\circ}$		$\stackrel{\sim}{\circ}$
∞		$\begin{aligned} & \infty \\ & \stackrel{8}{8} \end{aligned}$		¢
9		$\begin{aligned} & \stackrel{\circ}{\dot{\infty}} \\ & \stackrel{\rightharpoonup}{n} \end{aligned}$		$\stackrel{\sim}{0}$
－		$\frac{\bar{\omega}}{\bar{m}}$		$\stackrel{n}{n}$
永		$\begin{aligned} & \bar{\vdots} \\ & \stackrel{\rightharpoonup}{\infty} \end{aligned}$		－
E				号号

	+ + + +		$\stackrel{+}{+}$
	+ + + +		+ + + +
	$\begin{aligned} & \stackrel{\infty}{\circ} \\ & + \end{aligned}$		+ + + +
	$\begin{aligned} & \hline \dot{+} \\ & \dot{0} \\ & + \end{aligned}$	$\begin{array}{lll} 400 & 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ + & 0 \\ + & ++ \\ + & + \end{array}$	+ + + +
	$\begin{aligned} & \text { +i } \\ & + \\ & + \\ & \hline \end{aligned}$		+ + + +
	$\begin{aligned} & \text { H゙ } \\ & + \\ & \hline \end{aligned}$		+ + + +
	$\begin{aligned} & \text { + } \\ & + \\ & + \end{aligned}$		+ + +
	$\begin{aligned} & \text { N } \\ & \dot{+} \\ & + \end{aligned}$		$\stackrel{+}{\circ}$
$\begin{array}{rr} 1000 \\ 0 & 0 \\ +1 \\ +1 \\ +1 \end{array}$	$\begin{aligned} & \dot{\circ} \\ & + \end{aligned}$		$\stackrel{\rightharpoonup}{i}$
	$\begin{aligned} & \stackrel{\sim}{0} \\ & i \\ & i \end{aligned}$		－
	$\begin{aligned} & 0 \\ & \dot{0} \end{aligned}$		\cdots
	$\begin{aligned} & \infty \\ & \dot{0} \\ & i \end{aligned}$		$\stackrel{\square}{\square}$
	$\begin{aligned} & \infty \\ & i \\ & i \end{aligned}$		$\stackrel{\text { ¢ }}{1}$
$\begin{aligned} & 10 \infty \\ & \hdashline 00 \\ & 0007 \\ & 1 \\ & 1 \end{aligned} 1$	$\stackrel{\text { ri}}{i}$		$\stackrel{\rightharpoonup}{7}$
$\begin{array}{rlll} -\infty & 0 & 10 & 0 \\ 00 & 0 \\ 10 & 0 & 0 \\ 1 & 1 & 1 & 0 \\ \hline \end{array}$	$\begin{aligned} & \text { N} \\ & \stackrel{0}{1} \end{aligned}$	$\begin{array}{ll} 0 \infty 0 & \text { ry } \\ 000 & 0 \\ 000 & 0 \\ 1 & 1 \end{array}$	1
	$\overrightarrow{0}$	$\begin{array}{ll} \infty-1 & \text { no } \\ 00 & 0 \\ +1 & 1+ \\ +1 & 0 \end{array}$	Q $\stackrel{1}{+}$ +
	$\begin{aligned} & 0 \\ & 0 \\ & + \\ & \hline \end{aligned}$		\bullet + + +
	$\begin{aligned} & \hat{0} \\ & \stackrel{+}{+} \end{aligned}$	$\begin{aligned} & 100060 \\ & 000 \\ & +\quad 000 \\ & ++++ \\ & \hline \end{aligned}$	+ + + +
$\overrightarrow{0_{1}} \overrightarrow{0}+\underset{+}{+0}$	$\begin{aligned} & \overrightarrow{0} \\ & + \end{aligned}$		¢ + + +
$\begin{aligned} \therefore 0 & \overrightarrow{0} \\ + & \ddot{0}-0 \\ + & + \end{aligned}$	$\begin{aligned} & \overrightarrow{0} \\ & + \\ & \hline \end{aligned}$		¢
$\begin{array}{ll} \therefore-1 & 01 \\ \vdots \dot{\vdots} & 00 \\ ++ & + \end{array}$	$\begin{aligned} & \vec{j} \\ & + \\ & + \end{aligned}$		∞ $\stackrel{\sim}{+}$ +
	$\begin{aligned} & \hline \ddot{0} \\ & \stackrel{+}{+} \end{aligned}$		∞ 0 + +
	$\begin{aligned} & \ddot{\prime} \\ & \dot{+} \\ & + \\ & \hline \end{aligned}$		m \vdots + +
	$\begin{aligned} & 0 \\ & \vdots \\ & + \\ & \hline \end{aligned}$		∞ + + +
$\begin{aligned} & -101 \\ & 0 \\ & 0 \\ & 0 \\ & +4 \\ & + \end{aligned}$	$\begin{aligned} & \infty \\ & 0 \\ & + \\ & \hline \end{aligned}$		+ + + +
	矵		号

D.-Hourly Means of the Declination at Barrachpore in 1915, determined from all available days. Declination $=E 0^{\circ}+$ tabular quantity.

Hoars	Mid.	1		3	\pm	:	©	7	8	9	10	11	Noon	13	14	15	16	17	18	19	20	21	22	23	Mid.	Means
	(1)	(10'9	20'1 28.7 28.4	290 8.6 28.2	(3 3 29 29 28 8	$28 \cdot 3$ 28.4 28.0	$28 \cdot 3$ 28.8 28.8	(1) $\begin{aligned} & 39.2 \\ & 29.1 \\ & 30 \cdot 0\end{aligned}$	(103	近	$28 \cdot 4$ 27.6 $28 \cdot 4$	9×1 2.4 27.4 27	$28 \cdot 5$ 27.8 26.2	29.0 28.7 26.5	$29 \cdot 3$ 29.3 27.6	29.4 29.6 28.6 28.6	29.3 29.3 28.8	29.1 28.6 28.3 8.3	$29!$ 28.8 $28 \cdot 2$	29.3 28.7 281	29.2 28.6 28.2	$29 \cdot$ $28 \cdot 2$ $28 \cdot 7$ 28.3	29.2 28.7 28.3	29 29 29 28.5	29 29 28 28.3 28.3
Me:ans																										
$\int_{i} \begin{aligned} & \text { April } \\ & \text { May }\end{aligned}$	$\underline{.7 .9}$	$23 \cdot 1$	4	2×1	250	27	28.2	$29 \cdot+$:30 2	$30 \cdot 1$	$\because 0$	26.5	251		2.53	$2{ }^{6} \cdot 6$	$27 \cdot 0$	27.9	$27 \cdot 8$	27•	27.4	$27 \cdot 5$	27.7	27.7	$27 \cdot 9$	-7
Means																										

Note. - When the sign is + the H.F. is greater, and when - it is less than the mean.

Hourly Means of Vertical Force in C.G.S. units (corrected for temperature) at Barrachpore in 1915, from all available days. Fertical Force $=22000$ C.G.S. + tahular quanlity

Hours	Micl.	1	2	3	4	5	6	7	8	9	10	11	Noon	13	14	15	16	17	18	19	20	21	22	23	Mid.	Means
¢ $\begin{aligned} & \text { Jan. } \\ & \text { Feb. } \\ & \text { Mar. }\end{aligned}$	γ +191 +97 003	r 491 498 504	9 491 498 984	r +92 +98 05	r 492 498 505	7 493 493 4905	γ 494 499 .905	r $4!4$ $\mathbf{4} 90$ $\mathbf{5 0 7}$	\% ${ }^{7}$	γ 489 495 590	γ 483 499 496	$\begin{aligned} & \gamma \\ & 480 \\ & 490 \\ & 491 \end{aligned}$	γ 482 459 459	γ 483 $4!01$ 490	$\begin{gathered} \gamma \\ 494 \\ 490 \\ +95 \end{gathered}$	γ 487 492 498	7 89 493 498 498	$\begin{gathered} \gamma \\ 490 \\ 494 \\ 190 \end{gathered}$	7 491 496 406 500	r +91 +91 496 501	γ 491 497 497 502	7 491 497 497 .93	7 491 497 504	γ 492 498 .904	r 491 498 505	7 489 -496 501
Means																										
PApril	500	510	520	510	510	511	513	513	510	$5 \% 3$	491)	$4!9$	493	498	503	505	505	505	$500 ;$	506	507	509	¿09	609	509	50;
Means																										

Diurnal Inequality of the Vertical Force at Barrachpore in 1915, Ieduced from the alove Table.

Hourly Means of the Dip at Barrackpore in 1915, defermined from all availalle days. Dip = N. $31^{\circ}+$ talular quantily.

E．－Hourly Means of the Declination at Toungoo in 1915，determined from all available days．Declination $=\mathbb{W} .0^{\circ}+$ tabular quantity．

馵		$\stackrel{\circ}{\circ}$		$\stackrel{9}{\dot{c}}$
家	号号号艺	$\stackrel{\infty}{\circ}$		$\stackrel{\circ}{\text { ¢ }}$
ঞ		$\stackrel{\square}{i}$		¢
สั		$\stackrel{\oplus}{\dot{m}}$		$\stackrel{\square}{\square}$
ล		$\stackrel{m}{\circ}$		$\stackrel{\infty}{\infty}$
ลิ	雨：	$\stackrel{\text { ¢ }}{\text { ¢ }}$		$\stackrel{\infty}{\infty}$
\pm		$\overrightarrow{\mathrm{m}}$	¢\％	\cdots
$\stackrel{\infty}{\sim}$		$\overrightarrow{i n}$	¢	$\stackrel{\infty}{\text { i }}$
$\stackrel{\rightharpoonup}{ }$	Noj	$\stackrel{\oplus}{\dot{\sim}}$	$\dot{\sim} \dot{\sim} \dot{\operatorname{con}} \dot{\boldsymbol{m}}$	$\stackrel{-}{*}$
$\stackrel{\sim}{-}$		$\stackrel{\circ}{\omega}$	？	$\stackrel{\circ}{\circ}$
$\stackrel{\square}{\square}$		$\stackrel{\circ}{\dot{\infty}}$		$\stackrel{9}{i}$
\pm	non oom 우수 isio	$\begin{aligned} & \dot{\oplus} \\ & \dot{m} \end{aligned}$		\because
$\stackrel{\square}{2}$		$\stackrel{\circ}{4}$	のめサーロース 006th iscis	$\stackrel{+}{\text { is }}$
$\begin{aligned} & \text { ᄃ } \\ & \text { ¿ } \end{aligned}$		$\stackrel{e}{i}$		$\stackrel{\circ}{\circ}$
\pm		$\begin{aligned} & 0 \\ & \text { in } \end{aligned}$		$\stackrel{\square}{-}$
\bigcirc		$\stackrel{\infty}{\dot{\sim}}$		$\stackrel{\sim}{\sim}$
∞		$\overrightarrow{\text { ©i }}$	$\dot{9} \dot{9} \dot{-1} \dot{-}$	$\stackrel{\square}{\square}$
∞	．61－9 6000 óo is is is	$\begin{aligned} & \stackrel{C}{\omega} \\ & \hline \end{aligned}$		$\stackrel{\square}{6}$
－	－	$\stackrel{\sim}{\infty}$	－9－¢	\because
\bigcirc		$\stackrel{\varphi}{\dot{\infty}}$		\because
\sim		$\ddot{\infty}$		$\stackrel{\circ}{\circ}$
\checkmark	$\dot{O H} \dot{\circ} \dot{\sim}$	\vec{i}	O．O－meer $\dot{\operatorname{ANO}} \dot{\mathrm{N}} \dot{\mathrm{H}}$	$\stackrel{I}{i}$
∞	NOT $\quad \because+\underset{\sim}{\circ}$ 	$\underset{\sim}{\infty}$		$\stackrel{+}{\text {－}}$
N		$\stackrel{\oplus}{\infty}$		$\stackrel{5}{*}$
－		$\stackrel{\oplus}{\infty}$		$\stackrel{\infty}{\text {－}}$
寝	ner－no óo－in in 0	$\begin{gathered} \text { N } \\ \hline \end{gathered}$	ジ・デ ーNの	－
				鵖

Hourly Means of Horizontal Force in C．G．S．units（corrected for temperature）at Toungoo in 1915，from all avnilable days．Horizontal Force $=38000$ c．a．S．+ tabular quantity

$\begin{aligned} & \text { 号 } \\ & \text { O } \end{aligned}$	-	8		苟
或		18		\％
\％		$\stackrel{18}{8}$		$\stackrel{\text { ® }}{\text { ¢ }}$
¢		¢		$\stackrel{8}{8}$
ニ	，	へ		${ }_{8} 8$
$\hat{*}$	옻촟킃	照		\％
\bigcirc		\％		\％
∞	人	$\stackrel{9}{\leftrightarrows}$	予㤩页	\％
$\stackrel{\square}{-}$	佥 会 第	$\stackrel{\rightharpoonup}{3}$		$\stackrel{1}{\underline{E}}$
3		敛		\％
9	r易导	$\stackrel{5}{5}$		$\stackrel{9}{9}$
\pm		\bigcirc		管
\because		$1 \stackrel{\ddots}{3}$		\％
$\begin{aligned} & \overline{3} \\ & 3 \\ & 3 \end{aligned}$		$\stackrel{\text { in }}{\hat{O}}$		号
二		令		苍
은				$\stackrel{9}{i}$
\bigcirc	白号	$\underset{3}{3}$	言气	$\stackrel{\rightharpoonup}{3}$
\bigcirc	小三节会	$\stackrel{x}{ٍ}$		－
－		$\stackrel{1}{3}$		$\stackrel{3}{3}$
\bigcirc		3		$⿳ 亠 丷 厂 犬$
23		\＃		令
\rightarrow		$\stackrel{N}{\Xi}$	気気言言言	边
s		$\stackrel{7}{3}$		$\stackrel{\sim}{F}$
8		予		永
－		$\stackrel{9}{5}$		$\stackrel{\%}{¢}$
$\dot{\Xi}$		$\stackrel{3}{3}$		茼
20		輰		号

Diurnal Inequality of the Horizontal Force at Toungoo in 1915，derluced fiom the above Tuble．

	∞ 1	끙ㅇㅇ 으응	7
$\begin{array}{rlll} \cos 0 & 0 & 0 & +1 \end{array}$	∞		$\stackrel{1}{1}$
	7		$\stackrel{2}{1}$
	$\stackrel{\text { N }}{\substack{1 \\ 1}}$		$\stackrel{ \pm}{ \pm}$
	$\stackrel{N}{1}$		$\stackrel{2}{2}$
$\therefore \begin{array}{rrrr} \because N & -\infty & -\infty \\ 1 & 1 & 1 & 1 \end{array}$	7		$\stackrel{2}{1}$
$\left\lvert\, \begin{array}{rrr} 0 & 0 & 0 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{array}\right.$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	$$	1
$\begin{array}{rlrl} \sim N & \therefore x & 0 \\ 111 & 1 & 1 & 1 \end{array}$	$\begin{gathered} x \\ 1 \end{gathered}$	$\begin{gathered} 900 \\ 111 \\ 111 \end{gathered}$	7
$\begin{array}{rrrr} \hline \text { NON } & +\infty & 0 \\ 111 & 111 \end{array}$	$\begin{aligned} & \div \\ & 1 \end{aligned}$	111111	＋
$\begin{aligned} & \text { ORER } \\ &++1+\infty \end{aligned}$	$\begin{aligned} & \infty \\ & + \end{aligned}$	$+++\quad+++$	＋
	$\stackrel{\text { N }}{+}$	$+++\quad+++$	\pm
	$\begin{aligned} & \text { ה } \\ & + \end{aligned}$		r + +
$\left\lvert\, \begin{array}{cc} + \text { 䒬简 } & \text { 呙会 } \\ +++ & ++ \end{array}\right.$	$\begin{aligned} & \text { © } \\ & + \\ & + \end{aligned}$		¢ + +
$\left\lvert\, \begin{array}{ll} \text { ONO } & \text { 人n } \\ +++ & +++ \end{array}\right.$	$\begin{aligned} & \stackrel{\rightharpoonup}{\mathrm{O}} \\ & + \end{aligned}$		8 + +
$\left\lvert\, \begin{aligned} \text { 옹ㅇN } & \text { 옹응 } \\ +++ & +++ \end{aligned}\right.$	$\begin{aligned} & 9 \\ & + \\ & + \end{aligned}$		－
$\left\lvert\, \begin{array}{rl} 12 & 0 \\ +++10 & + \\ +++ \end{array}\right.$	7 +	＋＋＋＋＋＋	\cdots
	+ + +	$\begin{aligned} & -1+\infty \quad 000 \\ & 1+++1 \end{aligned}$	\cdots
$\begin{array}{ll}10-10 & 0 \times n+ \\ +11 & 11+\end{array}$	1	$\begin{array}{llll} \infty & =0 & 0 & 0 \\ 1 & 1 & 1 & 1 \end{array}$	18
$\begin{array}{rrrrr}000 & \infty & 0 & 0 \\ 1 & 1 & 1 & 1 & 1\end{array}$	6 1	$\begin{array}{cccc} O & 0 & 10 & - \\ 1 & 1 & 1 & 1 \end{array} 1$	$\stackrel{ }{5}$
$=0$ $=0$ $=$ + 1 1 1 1	\therefore		\cdots
$\begin{array}{ccccc}+ \\ + & =0 & 1-1 & 0 \\ 1 & 1 & 1 & 1 & 1\end{array}$	\because	$\begin{array}{cc}=-\infty & 00+ \\ 111 & 1\end{array}$	∞
$\begin{array}{rlrl}=1-2 & -1 & = \\ 111 & 1 & 1\end{array}$	$\stackrel{1}{1}$		0
$x \begin{array}{ccc}=0 & 0 & -x \\ 111 & 1 & 1\end{array}$	\cdots		$\stackrel{O}{1}$
$\begin{array}{ccc} \infty & 0 & x-\infty \\ 111 & 11 & 1 \end{array}$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	$\begin{array}{cccc} 120 & =0 & 0 \\ 11 & 1 & 1 & 1 \end{array}$	$\stackrel{0}{1}$
	च		$\stackrel{\sim}{3}$
	菏		㕺

Hourly Means of Vertical Force in C.G.S. units (corrected for temperature) at Toungoo in 1915, from all available days. Fertical Force $=16000$ C.G.S. + tabular quantity

Hours	Mid.	1	2	3	4	5	6	7	8	9	10	11	Noon	13	14	15	16	17	18.	19	20	21	22	23	Mid.	Means
¢Jan.	¢ ${ }^{\gamma}$	¢ 6 6	${ }_{6}{ }^{7} 7$	¢ 68	${ }_{6}^{6}$	${ }_{6}{ }^{7}+7$	$\stackrel{\gamma}{6-7}$	${ }_{6}{ }^{\gamma} 16$	$\stackrel{\gamma}{647}$	${ }_{6}{ }^{\gamma}$	${ }_{6}^{7}$	$\xrightarrow{\gamma}$	${ }_{6} \mathbf{\gamma}$	γ 638	$\stackrel{\gamma}{6+2}$	7 615	¢ 6 6	${ }_{64}^{\gamma}$	$\stackrel{\gamma}{6}$	$\stackrel{\text { r }}{6}$	γ $6+7$	 647 	7 648	$\stackrel{7}{648}$	${ }_{64}^{\gamma}$	$\stackrel{\boldsymbol{r}}{\mathbf{\gamma} 4}$
Feb.	6.50	651	650	651	$6: 1$	(5)	6:31)	65.	6.16	639	63.4	(6:33	636	642	6.47	615 649	$6+6$ 648	$6{ }^{645}$	646	647 649	647 649	647 649	648 650	${ }_{6}^{648}$	648 651	644 647
¢ Mar.	653	653	653	1533	65\%	652	653	653	652	6.5	63.9	635	633	636	643	648	650	648	648	650	651	651	652	653	653	648
3 Occ .	65	664	664	664	06:	604	fig6	666	661	652	$5 \cdot 5$	642	$6{ }^{65}$	652	$6 \breve{9}$	662	660	658	659	661	661	662	663	664	665	659
$>$ Not.	6.66	667	666	-666	$613 i$	667	668	(6ti 7	663	657	6.52	652	655	659	65.9	661	661	660	66.3	664	665	666	667	667	667	663
(Dec.	665	666	Citil	${ }^{16615}$	61;	$66 \overline{7}$	667	667	667	661	65.3	647	649	653	659	662	664	662	663	665	665	665	665	666	666	662
Means	65.8	658	658	65.3	65.5	6.5	6.58	658	656	619	64:	640	642	6.17	652	$6{ }^{6} 4$	65.	653	654	656	606	657	658	658	658	654
April	65.	¢55	65	65.b	6.5	65	6.77	656	649	641	032	698	629	638	647	65.2	653	651	6.49	649	650	651	652	653	653	648
- May	652	652	652	653	652	653	6.7)	654	649	6 ± 1	636	6	638	614	645	652	654	652	649	649	649	651	651	652	6 O 2	649
邑 June	663	663	663	613	663	CG.	666	6\%	658	6.90	6 ± 6	(\%)3	6 ± 7	$6 \overline{3}$	657	660	663	662	661	660	661	662	663	663	663	659
考 July	655	657		650	657	${ }_{6}^{697}$	669	659	652	$6+1$	6-40	6839	642	646	651	653	657	657	655	653	$60{ }^{\text {6\% }}$	656	656	657	657	653
∞ Aug.	657	658	65.8	6.98	658	659	664	660	651	641	033	(;:37	638	6.43	6-45	6.52	656	657	65\%	65.	$6 \overline{5} 5$	656	6.57	658	6 58	653
(8ep.	65	660	$6 ¢ 0$	660	660	660	665\%	6 in 2	651	6338	632	(;31	634	6.14	$65 \pm$	659	659	656	654	656	657	658	659	660	660	654
Means	657	658	637	6.57	657	6.58	663	659	652	6.13	637	$6: 36$	639	645	651	655	6 6̄7	656	654	654	654	656	656	657	657	653

Diurnal Inequality of the Vertical Force at Toungoo in 1915, deduced from the above Table.

[^3]Hourly Means of the Dip at Toungoo in 1915，determined from all available days．Dip $=$ N． $23^{\circ}+$ talular quantity．

蜀	¢	$\stackrel{\square}{-1}$	－	$\stackrel{\sim}{\sim}$
或		$\stackrel{+}{-}$		$\stackrel{\infty}{\sim}$
\pm	－	$\stackrel{\sim}{\sim}$	$\begin{array}{ll} \infty+\infty & \infty \\ i-\infty \\ \sim \end{array}$	$\stackrel{\square}{-}$
N	$\dot{\sim} \dot{\sim} \dot{\sim} \dot{\sim}$	$\underset{i}{\circ}$	$\underset{i-\infty}{\infty}+\infty$	$\stackrel{\infty}{-}$
N		$\begin{aligned} & 0 \\ & i \end{aligned}$		$\stackrel{\infty}{-}$
\％		i		－
9	－＋iャr	$\stackrel{\infty}{\sim}$		$\stackrel{0}{i}$
$\boldsymbol{\sim}$		$\stackrel{\ominus}{-}$		$\stackrel{+}{-}$
\because	$\underset{i-i}{O} \underset{\sim}{O} \underset{\sim}{\sim}$	\pm	$\begin{array}{ll} +\infty \\ i=\infty & \infty<x \\ i=1 \end{array}$	$\stackrel{\sim}{-}$
\because		$\stackrel{+}{-}$		$\stackrel{0}{\sim}$
$\stackrel{\sim}{\square}$	NOT	$\stackrel{\sim}{\sim}$	 	\vec{i}
\pm		$\begin{aligned} & \dot{0} \\ & \dot{6} \end{aligned}$	NNO サッぃ $\dot{O} \dot{\theta} \dot{0} \dot{0}$	$\stackrel{+}{\dot{\circ}}$
\cdots	FOR мmo io is or or	$\stackrel{\rightharpoonup}{6}$	パー か 060 bisio	$\underset{i}{-}$
$\begin{aligned} & \stackrel{5}{8} \\ & \stackrel{8}{1} \end{aligned}$		$\begin{aligned} & \circ \\ & \vdots \\ & i 0 \end{aligned}$		$\stackrel{\rightharpoonup}{0}$
二		$\stackrel{+1}{i}$	$\rightarrow \infty$－Nos． 	$\stackrel{\square}{*}$
\bigcirc	TN O	∞	긍 $\rightarrow+\infty$ fin $\dot{0}$ in is	$\stackrel{0}{6}$
\bigcirc	$\begin{array}{ll} 0 x \\ 0 & 0 \\ 0 & 0 \\ 0 & \vec{i} \end{array}$	نٍ		？
∞	$\therefore \dot{C}=900$	\pm	$\begin{array}{ll} 0 r i & 00 \\ i-0 i & 0 i \end{array}$	$\stackrel{-}{-}$
－		$\stackrel{i}{i}$		$\stackrel{\infty}{\sim}$
\bigcirc	隹	$\stackrel{\infty}{\sim}$		$\underset{\infty}{e}$
\bigcirc		$\stackrel{3}{\sim}$	$\begin{array}{ll} 10 \infty & \infty \\ i-\infty & i-1 \end{array}$	$\stackrel{c}{i}$
\because		$\stackrel{\infty}{\sim}$		$\stackrel{\sim}{-}$
\cdots		∞		$\stackrel{\Gamma}{\sim}$
\sim		$\stackrel{\infty}{i}$	$\begin{array}{ll} \infty \times \infty & r \infty \\ i-\infty & i=i \end{array}$	$\stackrel{\infty}{-}$
－		$\stackrel{\theta}{-}$	$\begin{array}{ll} =\therefore \infty & x a \infty \\ i \rightarrow-\infty & i-i-i \end{array}$	$\stackrel{+}{-}$
B	$\because \boldsymbol{O H}+\mathrm{ras}$ $\dot{\operatorname{con}} \dot{\infty} \dot{\boldsymbol{c}} \boldsymbol{x}$	$\stackrel{+}{i}$	$\begin{array}{ll} \infty \rightarrow+ & \infty x a \\ i-x & x-i \end{array}$	$\stackrel{\infty}{-}$
E		唇		产

[^4]F．－Hourly Means of the Declination at Kodaikanal in 1915，determined from all available days．Declination $=W .1^{\circ}+$ tabular quantity．

Hours	Min．	1	2	3	\pm	5	6	7	8	9	10	11	Noon	13	14	15	16	17	18	19	20	21	22	23	Mid．	Means
¢Jan．	19：6	19.7	$19 \cdot 7$	19\％	20.0	$20 \cdot 2$	20．6	20＇ 7	$20 \cdot 2$	$19 \cdot 5$	19.7	201	$20 \cdot 1$	19＇6	$19 \cdot 3$	$19 \cdot 2$	$19 \cdot 3$	19．5	$19 \cdot 7$	19＇5	$19 \cdot 6$	19．6	19＇6	$19 \cdot 7$	$19 \cdot 7$	19.8
F＇eh．		$20 \cdot 2$	$\because 0$	2） 2	$\bigcirc \mathrm{U} \cdot 3$	$20 \cdot 4$	$20 \cdot 3$	$21 \cdot 3$	$20 \cdot 3$	$20 \cdot 6$	21.1	$21 \cdot 6$	21.4	$20 \cdot 8$	$20 \cdot 0$	$19 \cdot 6$	$19 \cdot 4$	$19 \cdot 7$	$20 \cdot 0$	$20 \cdot 0$	$20 \cdot 1$	20.2	$20 \cdot 2$	$20 \cdot 2$	$20 \cdot 3$	20.3
\＃Mar．	205	20.5	20.5	21） 6	$20 \cdot 7$	$20 \cdot 5$	20.8	$20 \cdot 5$	$20 \cdot 2$	$20 \cdot 1$	$20 \cdot 3$	$20 \cdot 8$	$21 \cdot 4$	21.8	21.5	$20 \cdot 8$	$20 \cdot 2$	$20 \cdot 2$	$20 \cdot 4$	$20 \cdot 6$	$20 \cdot 7$	$20 \cdot 6$	$20 \cdot 6$	$20 \cdot 5$	$20 \cdot 5$	$20 \cdot 6$
\pm Oct．	23	237	23.5	23 s	239	$24 \cdot 0$	23	$23 \cdot 3$	23.2	$23 \cdot 5$	$2{ }^{\circ} \cdot 0$	248	$\underline{94} \cdot 8$	$24 \cdot 4$	$23 \cdot 8$	$23 \cdot 3$	$23 \cdot 1$	23.4	23.6	$23 \cdot 7$	$23 \cdot 9$	23.9	$24 \cdot 0$	23.9	$23 \cdot 8$	$23 \cdot 8$
－Nur．	$24 \cdot 6$	21.1	21	2 ± 1	2 ± 3	2.45	$24 \cdot 4$	$2+4$	$2+3$	$24 \cdot 4$	$2+.9$	25．0	$24 \cdot 9$	$2+1$	23.7	23.4	$23 \cdot 5$	$23 \cdot 8$	23.8	23.8	24－1	$24 \cdot 1$	$24 \cdot 3$	24.2	$24 \cdot 1$	$24 \cdot 2$
（Vec．	25.0	2509	2.51		$25 \cdot 2$	$25 \cdot 3$	25．3	$25 \cdot 3$	$25 \cdot 1$	$24 \cdot 8$	$25 \cdot 0$	25•5	$25 \cdot 5$	25．1	$24 \cdot 9$	$24 \cdot 7$	24.5	$24 \cdot 6$	$2+7$	$24 \cdot 6$	247	24.8	$24 \cdot 9$	$25 \cdot 0$	$25 \cdot 0$	25.0
Ne：any	$2 \cdot 2$	232	22.	$22 \cdot 3$	22.4	22：5	22．5	22.4	$22 \cdot 2$	$22 \cdot 2$	225	$23 \cdot 0$	230	$22 \cdot 6$	22.2	21.8	$21 \cdot 7$	21.9	22.0	$22 \cdot 0$	22.2	$22 \cdot 2$	$22 \cdot 3$	$22 \cdot 3$	$22 \cdot 2$	$22 \cdot 3$
PApril	20.5	2197	$39 \cdot 6$	20.7	21.8	$20 \cdot 8$	20.4	$19 \cdot 9$	19 9	$20 \cdot 1$	$20 \cdot 7$	$21 \cdot 7$	22.7	29．9	$22 \cdot 3$	21.4	$20 \cdot 7$	$20 \cdot 6$	$20 \cdot 8$	21.2	$21 \cdot 3$	21.2	21.1	20.9	$20 \cdot 8$	21.0
－May	$21 \cdot 1$	－1．3	21.3	$21 \cdot 3$	$21 \cdot 3$	21.2	21） 5	$20 \cdot 1$	21.3	$21 \cdot 1$	222	$23 \cdot 0$	$23 \cdot 3$	23.2	$22 \cdot 6$	21.9	21.3	$21 \cdot 2$	21.4	21.9	$22 \cdot 0$	$22 \cdot 0$	21.8	$21 \cdot 6$	21.4	21.6
兰 Juie	$\because \because 1$	2：0	$\because 1 \cdot 9$	$21 \cdot 8$	$21 \cdot 9$	21.8	21.1	20：3	$20 \cdot 3$	$21 \cdot 1$	$22 \cdot 2$	$23 \cdot 1$	23.8	23.9	$23 \cdot 4$	22.9	$22 \cdot 3$	$22 \cdot 0$	$22 \cdot 0$	$22 \cdot 3$	22.5	22.4	$22 \cdot 4$	$22 \cdot 3$	$22 \cdot 1$	$.22 \cdot 2$
硣 July	23 6	ごす	$22+4$	29.4	$22 \cdot 3$	$23 \cdot 2$	21－5	$00 \cdot 5$	$20 \cdot 6$	21.5	23.5	$23 \cdot 7$	24.5	$24 \cdot 6$	$2+1$	23.4	22.8	$22 \cdot 3$	$22 \cdot 3$	22.6	$22 \cdot 9$	22.9	$22 \cdot 8$	$22 \cdot 8$	$22 \cdot 6$	$22 \cdot 6$
T．Aug．	23．2	$23 \cdot 10$	$22 \cdot 9$	$22 \cdot 9$	$2 \% 7$	29.5	21.8	$20 \cdot 5$	210	22．1	$\because 3 \cdot 3$	$24 \cdot 3$	$24 \cdot 9$	$24 \cdot 8$	$24 \cdot 2$	$23 \cdot 5$	$22 \cdot 8$	$22 \cdot 6$	$22 \cdot 6$	$23 \cdot 0$	$23 \cdot 2$	$23 \cdot 3$	$23 \cdot 3$	$23 \cdot 3$	23.2	$23 \cdot 0$
（sep．	23.4	234	－3 3	$23 \cdot 3$	$23 \cdot 2$	$23 \cdot 1$	22.1	21.1	21\％	22.7	2.3 .8	24．8	25 5	$25 \cdot 4$	$24 \cdot 6$	23.4	$22 \cdot 9$	$22 \cdot 8$	$23 \cdot 0$	$23 \cdot 4$	$23 \cdot 5$	23.5	23.5	$23 \cdot 5$	$23 \cdot 4$	23.4
Means	22	2	$\cdot 1$	$22 \cdot 1$	220	21.9	$21 \cdot 9$	90\％	$20 \cdot 6$	21.4	$22 \cdot 5$	$23 \cdot 4$	24．1	$24 \cdot 1$	$23 \cdot 5$	22.8	$22 \cdot 1$	21.9	$22 \cdot 0$	22.4	$22 \cdot 6$	23.6	$22 \cdot 5$	22.4	$22 \cdot 3$	$22 \cdot 3$

Houry	M 11	1	\because	3	6	：	！	7	s	！	10	11	Niven	13	14	15	$1{ }^{16}$	17	18	19	$\because 0$	21	22	23	Mid．	Means
¢Jan．	5	－	\％	5：－	－${ }^{2}$	$0^{6} 187$	\％${ }^{7}$	${ }^{\gamma}$	，i1s	fild	8	${ }_{6} 6$	¢ ${ }_{6}$	$\xrightarrow{6}$	$\stackrel{r}{6}$	${ }_{5}^{7}$	$\underset{~ ¢}{9}$	5：7	$\underset{ }{7}$	$\stackrel{r}{r}$	$\underset{\text { \％}}{\text { ¢ }}$	$\stackrel{r}{\square}$	592		${ }_{594}$	$\underset{\text { cirs }}{\gamma}$
－Febs．	367	354	591	5	3：	5.43	596	5	0.5	（1354	15；${ }^{\text {a }}$	6is	（15．5）	1631	616	602	too	\％90	596	591	589	587	568	5 ys	587	606
安 Mar．	$5 \cdot 1$	5：11）	－ 2	Sinj	34.	30\％	504	5	616	61.3	1；it	67\％	Litis	［ 4 ± 5	（27	611	603	600	596	593	592	590	591	5， 8	591	611
\underline{O}	（in）	\％		6	B13	603	（i） 1	Gilkj	62：	6is	cis	（64．）	673	（53）	¢ 38	62.	616	612	606	c02	599	596	596	598	600	629
1 Si．v．	59	30	597	3：7	547	5：1］	$8: 16$	C0，4	623	641	（65\％	（inis	635	$6 \geq 0$	6108	806	606	606	601	599	596	596	597	597	597	609
（1）we	（10）4	（ia）	but	6，	tiel	bids	607	611	623	（6．4	6：\％	630	G643	645	630	621	617	616	611	608	607	60.5	606	605	607	620
Меаия	5， 4	305	497	59：1	50%	59	519	Cob	121	（ibl	662	6：67	（35）	638	C21	610	606	605	601	598	596	59.	59.5	594	596	612
rapril	512	395	541	2915	0%	5！ 18	597	65	\％	6， 6	68	699，	691	656	625	608	603	605	604	599	596	594	593	591	593	617
Misy	㬉	6in	10，	（i） 6	lin	（0） 4	606	cil	（13）	（1．5） 6	（6ic	6i：3	Bicu	61：3	623	610	605	605	606	cob	602	601	601	601	612	618
June	3！	3：7	597	5	097	5：17	600	6	617	633	¢ 61	6.59	1：59	643	626	611	598	593	592	59\％	592	593	593	5.5	397	610
S July	5：5	Ј：\％；	097	5：7	5：1\％	5：7	600\％	引5	615	435	6．49	（\％）	650	641	627	614	601	595	594	595	59.4	594	594	595	595	610
${ }^{\circ}$ Aus．	（10） 9	（in）${ }^{\text {a }}$	1501	tind	6i\％3	1013	6105	（1） 10	6：27	648	（16：	66^{2}	$6{ }^{6} 9$	635	（141	$62+$	612	605	606	603	600	6if（）	599	600	600	619
（Nep．	co：3	till ${ }^{\text {d }}$	6106	（in）	bua	¢i\％ 7	607	©！ 6	637	（6）	c：	697	683	660	633	615	607	607	607	60.2	598	597	598	600	602	623
Means	598	590	6il	601	601	6il	61	608	026	650	61	675	667	650	629	614	604	602	602	599	597	597	596	597	598	616

\footnotetext{
Diurnal Inequality of the Horizontal Force at Kodaikanal in 1915，deduced from the above Table．

Hoars	Mid．	1	2	3	\pm	5	6	7	s	9	10	11	Noon	13	14	1.5	16	17	18	19	20	21	22	23	Mid．	Meaus
¢Jan．	$\stackrel{\gamma}{7}$	$\stackrel{7}{7}$	$\underset{7}{\gamma}$	$\underset{78}{7}$	${ }_{78.5}$	${ }_{786}^{\gamma}$	$\underset{\sim}{7}{ }_{7}^{\gamma}$	${ }_{7}^{7} 8$	$\underset{7}{7}$	${ }_{7}^{\gamma}{ }_{\text {¢ }}^{1}$	$\stackrel{\gamma}{7}$	$\stackrel{\gamma}{7}$	$\underset{7}{7}$	${ }_{767}^{\gamma}$	$\underset{\sim}{\gamma}$	${ }_{7}^{7}$	${ }_{780}^{\gamma}$	779	$\underset{781}{\gamma}$	${ }_{782}^{7}$	$\stackrel{\gamma}{783}$	${ }_{783}$	$\underset{78+}{\gamma}$	$\stackrel{\gamma}{785}$	$\stackrel{\gamma}{786}$	$\stackrel{\gamma}{781}$
${ }_{\text {－}}$ Feb	79	799	\＄00	800	800	800	800	798	793	78	7×3	780	783	783	793	794	792	790	793	795	796	796	798	798	8 ¢ 4	794
它，Mar．	811	810	811	812	810	811	812	812	803	804	798	788	786	788	790	796	800	802	803	806	807	808	809	810	812	804
$\geqslant 0 . t$ ．	837	835	835	836	883	836	839	837	833	826	820	814	816	818	821	823	824	825	828	830	830	832	833	835	837	829
Nour	8.55 $8+6$	${ }_{8}^{8+6}$	846	845	－845	$8+5$ $8+7$	817	844	$8 \pm 1)$	$83+$		833	837	840	841	840	837	837	840	840	8 ± 1	$8+2$	844	844	844	${ }_{841}^{841}$
Means	$8: 1$	8：1	821	821	821	821	829	821	817	812	806	801	802	805	808	811	812	812	814	816	817	818	819	820	821	815
（April	81.	815	814	814	814	815	818	816	809	801	793	782	777	¢82	$\tau 93$	803	908	807	806	807	808	811	812	813	814	805
$\pm)_{\text {May }}$	818	818	819	818	819	820	883	88.2	816	808	803	799	799	803	809	813	816	816	814	813	814	816	817	818	818	814
Jaue	823	823	823	823	$8 \div 2$	824	827	828	82.	817	811	806	804	808	812	815	817	819	818	818	819	820	821	822	823	818
关 July	829	829	830	830	829	831	835	834	830	823	818	817	818	$8: 0$	823	827	827	827	826	825	825	827	828	839	829	827
${ }^{2}$ Aug．	828	829	828	828	828	8330	$8: 34$	$8: 30$	820	811	805	802	802	806	809	813	818	820	821	821	822	824	825	827	828	820
（rep．	838	838	839	839	839	840	843	837	82.	814	806	799	799	807	816	825	830	828	828	829	831	834	835	837	838	827
Meads	825	825	826	825	825	827	830	828	821	812	806	801	800	804	810	816	819	820	819	819	820	822	823	824	$82 \overline{5}$	819

		－	
	$\stackrel{+}{+}$	$\begin{array}{ll} \sigma+\infty & \cos = \\ +++ & +++ \end{array}$	$\stackrel{+}{+}$
	$\stackrel{+}{+}$	$\begin{aligned} & \infty+\operatorname{crs} \\ & +++\quad+++ \end{aligned}$	$+$
	$+$	$\begin{array}{ll} -\infty \infty & -\infty \infty \\ +++ & +++ \end{array}$	$+$
	$\begin{aligned} & \text { ๓ } \\ & + \end{aligned}$	$\begin{array}{ll} \text { CoNN } & 0+1 \\ +++ & ++ \end{array}$	$\stackrel{+}{+}$
	$\begin{aligned} & \text { N } \\ & + \end{aligned}$	¢O－ + + $+N+$	$\stackrel{+}{+}$
	$+$	$\begin{array}{ll}\text { N } \rightarrow 0 & \text { ara } \\ +1 & 1++\end{array}$	\bigcirc
	7		\bigcirc
	$\begin{gathered} \infty \\ 1 \end{gathered}$	$\begin{array}{ll} \text { NNT } & \text { OOR } \\ +++ & + \end{array}$	7
	$\stackrel{m}{1}$	$\begin{array}{ll} \infty \sim \sim & \text { ONo } \\ ++1 & 1+ \end{array}$	\bigcirc
$* 100$ $0-10$ 1 1 111	$\begin{aligned} & \text { + } \\ & 1 \end{aligned}$	$\begin{array}{ccc}\text { aren } \\ 111 & O N \\ 11\end{array}$	1
$\begin{array}{ccccc} \infty & - & \pi & \infty & 0 \\ 1 & 1 & 1 & 1 & 1 \end{array}$	$\stackrel{\sim}{\sim}$	$\begin{array}{ccc} \text { Nos } & \rightarrow 1= \\ 111 & 11 \end{array}$	1
	$\stackrel{9}{9}$	$\begin{array}{ccc} \text { NOO } & \sim \pm O \\ 111 & 11 \end{array}$	$\stackrel{12}{1}$
$\therefore \underset{1}{2}=\infty \quad 0+0$	$\stackrel{2}{1}$		$\stackrel{2}{1}$
	$\stackrel{7}{1}$		$\stackrel{n}{2}$
$\begin{array}{cc}\infty=0 & 000 \\ 111 & 111\end{array}$	0		$\stackrel{\cong}{1}$
$\begin{array}{ccc}c-0 & \text { cin } \\ 1 & 1 & 1\end{array}$	\cdots	$\begin{array}{cccc} -1 & = & +\infty & 0 \\ 1 & 1 & 1 & 1 \end{array} 1$	$\stackrel{1}{1}$
+-0 $+1+-\infty$ $+1+$	$\stackrel{\sim}{\sim}$	$\begin{aligned} & +\infty=0=0 \\ & ++++1 \end{aligned}$	$\stackrel{+}{+}$
	$\begin{aligned} & \bullet \\ & + \end{aligned}$	$\begin{array}{ll} =x 0 & 1-00 \\ ++\cdots & +++ \end{array}$	$\stackrel{+}{+}$
$\begin{aligned} 20 \infty & 0 \operatorname{ces} \\ +++ & +++ \end{aligned}$	$\stackrel{+}{+}$	$\begin{aligned} & \text { me. } \infty=\geq \geq \\ & +++++ \end{aligned}$	\cdots
$\begin{array}{ll}\text { a01 } & 1-+0 \\ +++ & +++\end{array}$	$\stackrel{0}{+}$	$\begin{aligned} & \text { 요 }+90 \\ & ++++++ \end{aligned}$	$\stackrel{+}{+}$
	$\begin{aligned} & \bullet \\ & + \end{aligned}$	$\begin{array}{ll} 0.0-0 \times 0 \\ +++ & +++ \end{array}$	$+$
$\begin{array}{ll} x_{2}^{2}=x & 1-+\infty \\ +++ & +++ \end{array}$	$\begin{aligned} & 0 \\ & + \end{aligned}$	$\begin{array}{ll} \infty+10 & \div \infty \\ +++ & +++ \end{array}$	- +
$\begin{array}{lll}+\infty-100 \\ +++ & +++\end{array}$	$\begin{aligned} & \bullet \\ & + \end{aligned}$	$\begin{aligned} & \text { osit } \quad \operatorname{son} \\ & ++++++ \end{aligned}$	$\stackrel{+}{+}$
$\begin{array}{ll}06000 & 000 \\ +++ \\ +++\end{array}$	$\stackrel{+}{+}$	$\begin{array}{ll} \vdots+\infty & \text { Nas } \\ +++ & +++ \end{array}$	$+$
	$\stackrel{+}{+}$	$\begin{array}{ll} \sigma+\infty & \infty \pi \\ +++ & +++ \end{array}$	+ + +
	号		鯣

Hourly Means of the Dip at Kodaikanal in 1915，determined from all availalle days．Dip $=\mathbf{N} .4^{\circ}+$ tabular quantity．

©		$\begin{aligned} & \infty \\ & \oplus \end{aligned}$		$\stackrel{\rightharpoonup}{i}$
B		$\begin{aligned} & \stackrel{4}{i} \\ & \underset{\sim}{2} \end{aligned}$		$\stackrel{\square}{-}$
\％		$\stackrel{ \pm}{\underset{~}{i}}$		$\stackrel{\infty}{\stackrel{-}{\square}}$
สั		$\stackrel{\oplus}{-}$		$\stackrel{\sim}{i}$
ล		$\begin{aligned} & \stackrel{N}{\sim} \\ & \stackrel{y}{*} \end{aligned}$		$\stackrel{+}{\square}$
\％		$\vec{\therefore}$		$\stackrel{\text { H }}{\sim}$
\bigcirc	禺官它	$\stackrel{i}{i}$	NITOMNON $\stackrel{0}{0} \dot{\sim} \dot{\sim}$	$\stackrel{\text { ¢ }}{\stackrel{-}{-}}$
$\stackrel{\square}{\square}$		$\begin{aligned} & \infty \\ & \stackrel{\infty}{-} \end{aligned}$	$\rightarrow \infty$ 	$\stackrel{\sim}{1}$
$\stackrel{ }{ }$		$\begin{aligned} & \bar{\circ} \\ & \ddot{-1} \end{aligned}$		$\stackrel{\infty}{+}$
\because		$\begin{aligned} & \stackrel{0}{0} \\ & \end{aligned}$	NOH ORN 	$\stackrel{\square}{\square}$
12		$\begin{aligned} & \ddot{\oplus} \\ & \ddot{-} \end{aligned}$		$\stackrel{9}{\bullet}$
\pm	-	$\overrightarrow{\dot{0}}$		¢
$\underset{\sim}{3}$		$\stackrel{1}{i-}$		－
	$\underset{y}{3}$	\vec{A}		$\stackrel{3}{9}$
\exists	$\begin{array}{lll} \sim \text { n } \end{array}$	$\begin{aligned} & 9 \\ & i 2 \\ & i 2 \end{aligned}$		$\stackrel{\rightharpoonup}{3}$
\bigcirc	シッニ ミミー	苛	号空 完完	－
\bigcirc	$\therefore \leq x$	\because		$\stackrel{\because}{\square}$
∞	$\pm \leq 0$	10	三完	$\stackrel{\because}{\square}$
r	ニこき	$\stackrel{\rightharpoonup}{=}$	$i=2$	$\stackrel{9}{9}$
\bigcirc	シ ミロシ	$\begin{aligned} & \text { in } \end{aligned}$	ッジロージ 	$\xrightarrow{\text { ¢ }}$
\because	ニーシ－－ニ	ie		$\stackrel{?}{-}$
\rightarrow	$\equiv x$	$\stackrel{+}{-}$	\dot{y}	$\stackrel{\pi}{i}$
$=$	\ddot{r}	吕	$\text { 就 } x$	$\stackrel{x}{i}$
\because		10		\cdots
－	$\text { 里 } 2 x$	$\stackrel{+}{+}$	シー 比	9
兰	- x	$\stackrel{+}{ \pm}$		$=$ $=$
$\stackrel{\text { 寺 }}{\underline{3}}$		令		

Diurnal Inequality of the Dip at Kodaikanal in 7915，deduced from the above Table．																									
JJan．	＋ $0 \cdot \%$	＋0 $0.15+0.5$	＋ 0^{\prime}	\％$+0 \cdot \frac{1}{5}$	＋ $0 \cdot 6$	$+0 \cdot 6$	＋ $0 \cdot 5$	$+0^{\prime}$ t	－0．2	－1．0	$-1 \cdot 6$	－1．7	－1．3	-0.7	－0． 1	$0{ }^{\prime}$	0^{\prime}	$+0 \cdot 1$	＋0． 2	$+0.3$	$+0 \cdot 3$	＋0．4	$+0.5$	$+0.6$	
\therefore Feb．	＋0．7	＋0．5 $+0 \cdot 6$	＋ $0 \cdot 6$	$j+10 \cdot 6$	＋0．13	＋0．6	＋01	－0．2	－ $0 \cdot 9$	－1．4	－ 1.7	$-1 \cdot 3$	－0．8	－0．2	－0	－ $0 \cdot 2$	$-0 \cdot 4$	－0．1	$+0 \cdot 1$	＋0．3	＋0．3	＋0．4	＋0．5	＋ +0.6	
$\stackrel{\text { U }}{\text { U }}$ Sar．	＋ 0 s	＋07＋0x	＋ 09	＋ 0.7	$+0 \cdot 8$	＋ 0.9	＋ 0.8	＋ $0 \cdot 4$	－0．2	－0．9	－ 1.9	－ 2.0	-1.7	－i． 4	-0.7	－ $\mathrm{C} \cdot 3$	－0．1	0	＋ $0 \cdot 3$	$+0 \cdot 4$	$+0 \cdot 5$	$+0.6$	$+0.7$	$+0.9$	
$=$ Oct．	＋0	$+0.6+0.7$	＋ 0.7	＋ $0 \cdot 6$	$+0.7$	＋1．0	＋ $0 \cdot 8$	＋ $0 \cdot 2$	－0．6	－1．3	－ 1.9	－ $1 \cdot 6$	－1．3	－0．9	$-0 \cdot 6$	－0．5	－0．4	$-0 \cdot 1$	$+0.2$	＋0．2	＋ 0.4	$+0.5$	$+06$	＋ 0.8	
Nor．	+0.5 +0.5 +0.6	$+0 \cdot 6+03$ $+07+0.7$	+05 +0.7	+0.5 +0.7 +0.7	+0.5 +0.7	+0.6 +0.8	＋ $0 \cdot 3$	－0．2	－0．8	－ 1.1	-1.0 -1.7	-0.5 -1.7	－ $0 \cdot 2$	－1．1）	－0．1	－0．3	－0．3	0 +0.1	0 $+0 \cdot 3$	+0.1 +0.4	+0.2 +0.4	+0.4 +0.6 +0.6	+0.4 +0.6	+0.4 +0.7	
（Dec．	＋0．6	＋071＋0．7	＋ $0 \cdot 7$	$+0.7$	$+0.7$	＋0．8	＋ $0 \cdot 0$	$+0.3$	-0.5	－ 1.2	－1．7	$-1 \cdot 7$	－1．4	－ 1.1$)$	-0.4	$-0 \cdot 1$	－0．1	＋0．1	$+0 \cdot 3$	$+0.4$	$+0.4$	$+0 \cdot 6$	$+0.6$	＋ 0.7	
Means	$+0$	＋ 0	$0 \cdot 7$	＋ $0 \cdot 6$	$+0 \cdot 7$	＋ 0.8	＋ 0.6	$+10 \cdot 2$	5	－1．1	． 6	－1．4		－0．7	－0．3	0.2	－0．2	0	$+0 \cdot 2$	＋0．3	＋ 0.4	＋ 0.5	＋ $0 \cdot 6$	$+0 \cdot 7$	
Spril	$+1 \cdot 1$	$+1 \cdot 0+0 \cdot 9$	＋0．9	＋ $0 \cdot 9$	＋！ 0	＋1．3	＋1•1	＋ 0.3	-0.7	－1．6	－ $2 \cdot 6$	－3．0	－ $2 \cdot 4$	－1．2	－0．1	＋ $0 \cdot 3$	$+0 \cdot 2$	＋ $0 \cdot 2$	＋ 0.3	$+0.4$	$+0 \cdot 7$	＋ 0.8	$+0.9$	$+1$	
\pm ）May	$+0 \cdot 5$ +0.5	$+13 \cdot 5+05$ $+0 \cdot 5+0.5$	+0.5 +0.4	+0.5 +0.5	+0.6 +0.5	+0.9 +0.8	＋0．8	+0.1 +0.1	－0．8	－1．4	$-1 \cdot 7$	－1．7	－1．2	-0.5	0	＋0．3	＋0．3	$+0 \cdot 1$	0	$+0.1$	＋0．3	＋ 0.4	$+0.5$	＋0．5	
	＋ 05	$+0.5+0.5$	＋ $0 \cdot 4$	＋ 0.4	＋ $0 \cdot 5$	＋ $0 \cdot 3$	＋08	$+0 \cdot 1$	$-0 \cdot 3$	－ $1 \cdot 0$	－1．5	$-1 \cdot 7$	－1．2	-0.7	$-0 \cdot 4$	$-0 \cdot 1$	$+0 \cdot 1$	0	0	$+0 \cdot 1$	＋ 0.2	$+0.3$	＋0．4	＋ 0.5	
，Juiy	$+0 \cdot 3$ +0.3	＋03＋ 06	＋0．1	＋ 0.3	＋0．5	＋ 0 S	$+0.7$	＋03	－0．5	$-1 \cdot 1$	－ $1 \cdot 2$	$-1 \cdot 1$	-0.8	－0．5	0	$+0.1$	$+0 \cdot 1$		－0．1	0	＋0．1	＋0．2	＋0．3	＋0．3	
	+019 +11	＋10： +109 $+1.1+1.1$	+09 $+1 \cdot 1$	$+0 \cdot 9$ $+0 \cdot 9$ $+1 \cdot 1$	+10 +1.2	$+1 \cdot \frac{1}{4}$ $+1 \cdot 5$	+1.0 +0.9	$\left(\begin{array}{c}0 \\ 0 \\ -0\end{array}\right.$	－ 1.0	-16 -2.4	$-2 \cdot 0$ $-3 \cdot 1$	-1.9 -3.0	-1.5 -2.1	$-1 \cdot 1$	-0.6 -0.2	+0.1 -0.1 +0.3	$+0 \cdot 1$ $+0 \cdot 1$ +0.1	+0.2 +0.1	＋ 0.2 +0.3	0 +0.3 +0.5	+0.1 +0.5 +0.8	+0.6 +0.8 +0	+0.8 +1.0	+0.9 +0.1	
Means	＋0．8	＋ 0.8		0.7	＋0．8		＋ $0 \cdot 9$	$+0$	$0 \cdot \mathrm{~s}$	15	$2 \cdot 0$	－2．0	－	$-0 \cdot 8$	－0．2	＋ 0.2	＋0．2	＋ 0.1	$+0.2$	$+0.3$	$+0.5$	＋ 0.6	$+0.7$	＋ 0.8	

By E. C. J. Bond.
Owing to the deficiency of officers in the department, caused by the war, no Base Line work was practicable during the year.

A traverse survey of the Imperial Delhi Area

Khan Bahsdar Syed Aulad Hoseein from lst October 1915 to 30th November 1915.
Mr. E. C. J. Bond, in charge from lst December 1915.

Mr. O. N. Pushong, attached from 1st December 1915.

Lower Subordinate Service.
2 Computera, etc. boundary, on the west side of the Jumna river, was undertaken by the party. A report on this work is given in Part III.-Special Report, at the end of this volume.

Programme for 1916-17.-During the ensuing field season triangulation will be carried out in Delhi for providing points to No. 2 party, Northern Circle, for the revision of the 4 -inch maps of "Delhi and vicinity", and also for the control of the traverse of the Imperial Delhi Area boundary, on the east side of the Jumna river, to be executed by No. 2 Party.

THE COMPUTING OFFICE.

By J. de Granff Hunter, M. A.

Personnel.
Imperial Officer.
J. de Granff Hunter, Esq., M. A., in charge.

Provincial Officer.
Mr Kanuman Prasad, Fxtra Asstt. Suodt
Computing Office.
Lni Sahib Jahun Chandra Dera, B. A. and 11
Compulers, 4 Computers altnclied (8 Computers

- from the field parties worked for a portion of the sear in Computing Office) 10 book-binders.

Printing Office.

Mr. Sarat Kumar Mukerji, Sub-Asstt. Supd. 17 Compositors, 3 Printers.

Torkhops.
1 Hend Artificer, 8 fillers and carpenters.

The office was visited by H. H. Sir James
Meston, K.C.S.I., LL.D., V.D., LieutenantGovernor on 14th July 1916.

Competing Section.
The excellent services of Mr. Ishan Chandra Deva in the Computing Office from 1885 and as Head Computer from 1908 have been recognised, and the title of Rai Sahib has been conferred on him. The Gazette of Brd June 1916 contained the followine announcement:-
"His Excellency the Viceroy and Governor General has been pleasel to confer the title of Rai Sahib as a personal distinction upon
Mr. Ishan Chandra Deb, B.A., Head Computer, Trigonometrical Survey Office, Dehra Dun".

On :2nd September 1916 Colonel G. P. Lenox Conyngham, R.E., Superintendent of the Trigonometrical Survey held a public durbar and handed the sanad of Rai Sahib to Mr. Ishan Chandra Deva.

A" Millionaire", an arithmometer of greatly improved pattern, a Comptometer (adding machine) and 7 slide rules have been received in the Computing Office during the year. The addition of these instruments has greatly facilitated the work of computations.

Triur!pulation Pamphlets. Good progress has been made with the compilation of "(G. T. data" (i.e. all data available in the Head Quarters oftice, Dehra) for triangulation pamphlets. The Computing Office in conjunction with 15 Party have compiled data for 20.5 degree sheets during the 12 months under review. Certain minor alterations have been introlucel, but in the main the procedure explainel in last year's report has been found satisfactory in practice.

Aljustment of triangulation. The revisionary triangulation at the junction of the Burma Coast Series and the Manipur Meridional Serics was completed in liebruary by 15 Party and the observations were shortly afterwards reduced. It was not possible to take up, the arjlistment of the Burma triangulation at once, but a start lias now been made and the solution of the necessary equations for the adjustment is nearly completed. It is hoped that the adjustment will be completed in 1916 but it has only been possible up to the present to apply two computers to the work. When this has been completed it will be possible to proceed with Burma triangulation pamphlets.

All geodetic triangulation throughout India other than what depends on the Burma triangulation has now been adjusted, the following series having been dealt with during the year :Sambalpur Meridional (No. 85), Kanchi (No. 83), Ashta (No. 88), Naldrug (No. 90) and Middle Godaveri (No. 12) Series.

Levelling. The dyuamic and orthometric values of the following lines of levelling were computed during the year:-
(1) Indian lines. Dacca to Mymensingh; Tindhāria to Darjeeling; Raichur to Bāgalkot; Bareilly to Häthras; Bareilly to Meerut (revised); Ambāla to Meerut (revised); Sargodha to Multān and Mahiwala; Solon to Simla ; Ferozepore to Lahore (revised) ; Multān to Baháwalpur ; Jacobābād to Quetta; Bellary to Gooty (revised).
(2) Burma lines. Thazi to Mandalay (revised); Mandalay to Myitkyina (revised); Amherst to Pegu; Henzada to Bassein ; Thazi to Taunggyi ; Minbu to Paugma and Paugma to Salin.

The revision of the levelling line 61 between Meerut and Ambala having thrown doubt on the reliability of the bench-mark at Ambāla Church ($\frac{\text { R. M. }}{\mathbf{5 3}} \mathbf{1 8}{ }^{2}$ -) (ride page 77, Records of the Survey of India, Volume VII) its value was computed from Meerut by two different rontes, namely cia Sahàranpur and ria Delhi and Karnāl. The former gave its value as !00:50:3 (dynamic), the latter, as 900.581 . The mean of these two (viz. $900 \cdot 542$) has been adopted as the final value of the bench-mark in supersession of the value published on page 2si of (i. T. S. Volume XIX B, and all heights dependeat on this have been corrected.

The aljustment of the Assam-Bengal circuit from Pärbatipur riu Gauhāti, Karingganj, Akhaura, Dacea and Pachuria to Poradaha has been completed and the results published in addenda to levelling pamphlets 78 and 70 .

As mentioned in last year's report, Elephant Point which had hitherto been the datum of level for Burma was considered ill suited to the purpose, seeing that the tidal observatory is 2 miles up the Rangoon river. Mean sea-level as cletermined by the Amherst Tide-gange is more reliable and has been adopted as the new datum, and all heights dependent on Elephant Point have been converted to the new terms. The entire Burma levelling previously pmblished with preliminary values has been recomputed. The final dynamic and orthometric values of the umpublished lines have also been worked out. These values will not be modified for many years to cume, until probably such time as a junction with the Indian levelling is effecterl.

A secoud edition of the Burma pamphlets with orthometric values, is now being printed. This will supersecte the old provisional issue of 1911-13. (rood progress has already been made in that direction, and pamphlet ! ! 1 , the first number of the second series, is well advanced through the press.

Press work. During the year press copies for 205 triangulation pamphlets were preparel; this nomber is exclusive of 20 prepared and printel last year. Proofs of 180 pamphlets were read in the Computing Office and passed.

Aidenda to levelling pamphlets 39, 1.7, 78 and 79 , together with the press copy of Jevelling pamphlet $3 t$ were prepared and proofs passed.

Part I of the ith Edition of the Auxiliary Tables, comprising 37 Tables of Graticules in ?t pages, was prepared for press and proofs were read and passed.

Proofs of pages 19 to 10.4 of Professional paper No. 16, at present in the press, were read, examined and passerl.

Records. I card index of all the records has been begun and is nearly complete and all the recorls are now satisfactorily stored in suitable racks.

Research. I complete mechanical analogy to any net-work of series of triangulation has been found, such that the strains in the mechanism correspond to the most probable adjustments in the net-work. The corresponding underlying principles are, in the one the principle of least work, and in the other the principle of minimumsquares. This analogy has assisted the consideration of most probable adjustments, and convenient formule for the probable closing errors of rircuits formed by series of triangulation have been found, which agree satisfactorily with actual results. The probable closing errors in side or azimuth vary as $\sqrt{\mathrm{KM}^{2} \mathbf{S}}$ where M is the quantity explained in last year's report* and S is the length of the corresponding series in the circuit. The probable closing error in northing or easting depends on the point of closure, and rarics as $\sqrt{\int M^{2} \mathbf{K}^{2} d s}$ where \mathbf{R} is measured from the closing point. For a line of given form this varies as the three halves power of the linear dimensions.

The question of probable errors of positions fixed by triangulation after all adjustments have been performed has proved more troublesome, but now appears to have been satisfactorily solved. It is of importance to know how closely a fixing may be relied on, either when comparing with astronomical fixings, or in such cases as when revisionary triangulation is performed to test whether an earthquake has caused appreciable horizontal movement of the ground. The Shillong earthquake of 1897 has been considered from this point of view, and it appears there is not real justification for assuming any wholesale horizontal movement of the ground. To establish such movements more accurate observations would be necessary. The questions briefly alluded to above are being discussed in detail in Professional Paper No. 16 now in the press.

Book liudiug. During the year a wire stitching machine was received from England and was made use of in stitching the triangulation pamphlets and other small publications, by wire; the machine has been found very useful. The work of binding small pamphlets has thereby been much accelerated.

A good deal of attention has been given to the binding and general appearance of publications, and it has been found possible to make considerable improvements without adding appreciably to the cost of the work.

The following publications and manuscript books were bound :-
Degree triangulation pamphlets 63330 Copies.
Professional Paper No. 15 with gold lettering on back 150 ",
Addenda to Levelling pamphlets $43,47,78$ and 79 800 "
Five Figure Iogarithmic Tables 100 ,
Auxiliary Tables, 5th Elition, Part I 200 ,
Blank angle books for Parties 200 ,
Form 17 Topo. (Clinometric Heights) in small books, for Parties ... $10: 50 \quad$,
Old manuscript records of triangulation 4.00 Books.
Registers for office use 50 Copies.
About 100 books of daily use were also repaired.

Printing Section.

During the year this office has been rearranged and an additional room has been taken over into which the three hand presses have been moved. The main room is now occupied only by compositors and distributers: and all the case-frames have been arranged so as to be more conomical of space. Some new case-frames have been received from England and more have now been indented for; so that next year all the old furniture, which is rery old and unsatisfactory, will be replaced. A second machine press is expected very shortly and artangements for its accommoliation are being made. These changes have been made necessary by the great increase in printing work which has recently occurred. A larger stock of trpe has also been received so as to make it possible to give complete proofs of a publication before any part is distributed. This has added to the efficiency of the work.

During the year triangulation pamphlets for $1 s 0$ degree sheets (G. T. data only) have been printed, totalling 1616 pages. All the graticule tables used in the department (37) have been printed, forming Part I of the .ith edition of the Auxiliary Tables. Professional Paper No. 16 has been printell from pages (6!-10t.

Wonkshops.

The Workshops have greatly benefitted from the installation of an electric motor in 1914-15. A sensitive drilling machine has been received during the year 191.5-16. The outer lean-to shed has been extended to the full length of the Workshop building and a concrete floor lail down. As the season has been a particularly wet one this has proved invaluable.

A lot of work has been done in the construction of large racks and tables for the varions sections and trigonometrical parties. Painting of all the woodwork of the offices has been tone by the carpenters. Various minor additions to the oflice buildings have been made. The need for these was absolntely imperative. Three out of four new masts very similar to that illustrated in Records of the Survey of India, Volume V, page 1.7 have been made.

The design has been appreciably improved and the mast is now very strong, durable and compact. The wool used is Nana. These masts are for some of the Madura Series (triangulation) station about to be observed at by No. 1.; Party.

Repairs to many instruments and apparatus of the Trigonometrical Parties (notably No. 15 Party) have been carried out. The integrator reported as under construction last year has been satisfactorily finished. It is illustrated in this volume.

Mechanical Integrator for culculating effect of irregularities of form and of density in the earth's crust on the deflection of the plumb-line. -The attraction at O along OP of an elementary cylinder of density ρ of height h and standing on a base of elementary area $r d \theta d r$ referred to O as origin is $\rho r d \theta d r \frac{h}{r \sqrt{r^{2}+h^{2}}}$ or $\frac{\rho h d r d \theta}{\sqrt{r^{2}+h^{2}}}$.

The components of this in two directions at right angles are

$$
\delta \mathrm{X}=\frac{\rho h d r d \theta}{\sqrt{r^{2}+h^{2}}} \cos \theta \quad \delta \mathrm{Y}=\frac{\rho h d r d \theta}{\sqrt{r^{2}+h^{2}}} \sin \theta
$$

Integrating over a finite area,

$$
\mathrm{X}=\rho h \int \frac{d r}{v^{\prime} \overline{r^{2}+h^{2}}} \sin \theta \quad \mathrm{Y}=-\rho h \int \frac{d r}{\sqrt{r^{2}+h^{2}}} \cos \theta
$$

These are the integrals then which are sought: except for the case where curvature of the earth has to be taken into account. In this case the expressions may be written

$$
\mathrm{X}=\rho h \int f(r) \frac{d r}{\sqrt{r^{2}+h^{2}}} \sin \theta \quad \mathrm{Y}=-\rho h \int(r) \frac{d r}{\sqrt{r^{2}+h^{2}}} \cos \theta
$$

and $f(r)$ is a function of r only which is not very different from unity. The form of $f(r)$ will not be considered here as it does not affect the mechanism to any marked extent and the integrator may be arranged to deal with any type of function. The integrator is constructed on the principle of the Kelvin disc-cylinder-sphere integrator, but is arranged to be automatic except so far as it is necessary to follow a pointer round contours of height on a map. If then a platean of height h and of area defined by any bounding curve on the sea level surface is required, it is necessary to perform the integrations

$$
\int \frac{\sin \theta d r}{\sqrt{r^{2}+h^{2}}} \text { and } \int \frac{\cos \theta d r}{\sqrt{r^{2}+h^{2}}}
$$

round the bounding curve: and when the attracting mass is at a sufficient distance to make curvature of the earth have appreciable effect, both of these integrals have to be modified by multiplication (under the integral sign) by a function of r which differs little from unity. The integrator performs these integrations as will now be explained.

A is a horizontal disc of $6^{\prime \prime}$ diameter supported at its centre on a point and also on three wheels. shese permit A to rotate about a vertical axis through its centre.
B is a wheel which rubs on the disc. It is free to slide with the shaft CC (the shaft itself does not rotate), but is constrained to rotate on this shaft with the wheel D , to which are attiched two rols parallel to the shaft and passing through two holes in 13 . These can be seen in the photo close to the wheel D.

The shaft C fits in a bearing at E which permits of a slight tilting of the shaft in a vertical plane. Behind F is a second bearing carried by an arm pivoted at G on a horizontal axis parallel to the shaft. The reason for this mounting is to enable the wheel B to rise and fall slightly and so to keep a uniform pressure on A in spite of slight lack of truth of A, B, C. The shaft is continued outwards to the right by a rack HH the teeth of which are clear in the photo. The junction of the rack and shaft is made free by pivoting in two directions at right angles to avoid jamming when the shaft rises and falls. The rack passes through a gruide below the gear wheel I, and engages another gear wheel clamped on the same shaft with I and below I. Rotation of the wheel I accordingly moves the shaft C and with it the wheel B in direction of the shaft C.

A wire passes from O and is wrapped once round the wheel K and thence goes to the counterweight W_{1}. A second wire from O passes round the wheel D and thence to the counterweight W_{g}.

Tracing these wires in the opposite direction they are led from O over little wheels into a vertical direction: and thence over two more wheels outwards along the long arm LL. This arm is pivoted on a vertical axis through O and is also provided with a sliding part MN. The wire which goes to the wheel D is made fast to MN at a height which makes it horizontal along the arm LL: the second wire is attached at a height above the first wire which represents h. If then the arm LL is swung round the axis through O and the portion MN

Integrator for calculating Attractions, designed by Mr. J. de Graaff Hunter, M.A.
slid along it so as to follow any boundary line on a chart, it will be seen that the wire to D changes so as to represent $d r$ while the other wire represents $\sqrt{r^{2}+h^{2}}$. This second wire is made of suitable length so that when $\sqrt{r^{2}+h^{2}}=0$, the wheel B (which is moved along CC proportionally to the movement of the wire and the wheel K) is exactly over the centre of the disc
AA. In this way an angular movement proportional to $\frac{d r}{\sqrt{r^{2}+h^{2}}}$ is communicated to the dise
AA: for the wheel B turns by an amount $d r$ and drives on the disc AA at a distance from its centre proportional to $\sqrt{r^{2}+h^{2}}$. The motion of the disc AA is communicated to two counting friction discs $P Q$ (similar to those found in ordinary planimeters) and inclined to the radius of the dise at angles of θ and $90^{\circ}+\theta$ respectively. These discs accordingly take up the motions

$$
\frac{d r}{\sqrt{r^{2}+h^{2}}} \cos \theta \text { and } \frac{d r}{\sqrt{r^{2}+h^{2}}} \sin \theta
$$

respectively. To arrange for their taking up the correct angular positions they are mounted on vertical spindles each bearing a wheel whose periphery is screw cut. A wheel R of the same size and design is mounted on the vertical axis of rotation of the arm LL, and an endless wire passes round these three wheels (with a complete turn round each to avoid slipping) and so ensures all three wheels having the same angular motion which is also that of the arm LL: and the direction of a counting dise is accordingly $\theta+a$ constant, θ being the polar angular coordinate of the arm LLL. The constant is easily adjusted to the zero for one dise and 90° for the other. The advantage of having the 3 wheels screw cut on their peripheries is that complete turns of the connecting wire may be applied withont cansing the turns of the wire to foul.

The counting dises are also pivoted on a horizontal axis so as to ride by their own weight only on the disc AA.

To enable the pointer of the portion MN to be cansed to follow any given contour on a map without effort, a wheel S and shaft I ' are fitted. The shaft is screw cut and a wire extending the whole length of the arm LL (only a small portion of which is visible in the photo) is wrapped several times round the shaft. The turning of this wheel S traverses the part MN along the shaft LL. A counter weight to make movement in either direction approximately equally easy is attached by means of a wire passing round the wheels $\mathrm{U} V$ to the part M N. This weight is not visible in the photo: but the wire may be seen on the left. It is not tant as the weight was removed when the photo was taken to euable the whole instrument to be tilted over and so allow a better photograph to be taken.

When curvature of the earth is to be taken account of, this is done by so arranging that the wire dealing with the corresponding factor is pulled more or less up the vertical portion of MN by passing it round a pulley below and attaching its extremity to another pulley on a guide of suitable shape. This guide appropriately shaped for dealing with a map on the scale 32 miles $=1$ inch is visible on the right of the photo.

The calibration of the integrator is easily performed by running the pointer round a contour of geometrical form, which enables the attractions to be calculated precisely.

The Selsmogiraph.

The Omori Seismograph has been working throughout the year. The local earthquake of 29th August 1916 dislocated it, so that no proper record was obtained. The earthquakes recorded are tabulated below: -

List of earthquakes 1915-16.

	Date.	Time of beginning (corrected).			Distance of Epicentre in miles.		㕱	Intensity.	Remarks. Identif. cation with any definitely ascertained earthquake.
		Delı		Simlu*.	Delira.	Simla*.			
1	4th Oct., 1915		52	1242	9,800	9,000	125	Great.	
2	2nd Nov.		$3 \stackrel{1}{3}$	134	3,570	5,000	215	Moderate.	
3	27th ,"			$1 \begin{array}{ll}1 & 37\end{array}$	+20	200	4	Slight.	
$+$	3rd Dec.		11	$8 \quad 13$	840	1,000	37	Great.	
5	18th ,		38	$1 \geqslant 38$	840	1,000	28	Moderate.	
6	2lst "			...	Local	Slight	
7	30th		$7 \frac{1}{2}$	87	700	600	7	Slight.	
8	2nd Jan., 1916	19	\pm	193	2,310	5,000	230	Great.	
9	1+th "	12	$\frac{1}{2}$	1159	3,920	+,000	4.6	Do.	
10	l 1 th "		2	141	3,850	+,000	132	Severe.	
11	25th "	12	33	12 32	2,240	2,500	114	Great.	
12	and Feb.		16	13 14	3,010	4,000	55	Do.	
13	7th "		33	$3 \quad 31$	5,040	6,000] 15	Moderate.	
1.1	2Sth ",		12t	$\stackrel{1}{2} \quad 12$				Great.	
1.5	Sth April		7 !	$15 \quad 7$	3,850	4,000	110	Moderate.	Japan.
16	lith ",	18	93	$18 \quad 10$	2,800	3,500	4.	Great.	
17	lsth ",	9	+4.	984	4,680	6,000	26	Moclerate.	N.W. Pacific.
18	2ind "	17	9	17 Il	6,500		54	Severe.	
19	:2nul ,		25	19 28	640		15	Slight.	
$\because 1$	2-th ."	$1: 3$		1354			152	Great.	
$\therefore 1$	2:3rd June		271		420		28	Slight.	
$\therefore 2$:mblur.		$10 \frac{1}{1}$	$7 \quad 11$	+,970	5,000	130	Moclerate.	
23	?!th ",			1210				Severe.	Instrument dislocated.
$\because 1$	12th Sept.	1:	10	1210	3,570	3,000	30	Moderate.	

[^5]Solar Phóogiraphy.
Negatives taken during 1915-16.

Monct.		$\begin{gathered} \text { No. } \\ \text { of } \\ \text { of lays. } \end{gathered}$	Snn in visible	No. of $8^{\prime \prime} \mathrm{Ne}$ gatives	$\begin{aligned} & \text { No. of } \\ & 12^{\prime \prime} \text { Ne. } \\ & \text { dgative } \end{aligned}$	Montl.		$\begin{gathered} \text { No. } \\ \text { of } \\ \text { daye. } \end{gathered}$	Sun in visible.	$\left\{\begin{array}{l} \text { No. of } \\ \mathbf{8}^{\prime \prime} \text { Ne. } \\ \text { gatives. } \end{array}\right.$	$\begin{aligned} & \text { No. of } \\ & 12^{\prime \prime} \mathrm{Ne} \\ & \text { gatives. } \end{aligned}$
October	...	31	0	56	3	April	...	30	0	52	3
Sovember	...	30	0	5\%	2	May	\ldots	30	1	5.5	2
December	...	29	\square	S2	2	June	...	2 k	6	36	0
Jannary	...	30	1	54	1	July	...	28	3	38	0
February		28	1	:]	3	August	\ldots	24	7	40	0
Mareh		30	1	5.)	1	September	\cdots	25	5	42	0
						Totals	...	339	27	580	17

Owing to clondy state of weather no 12 Negatives were taken from June to September 1916.

Diagram of the Triangulation and Traverse
of the
Imperial Delhi Area

Scale IInch to 1 Mile

PART III.-SPECIAL REPORT.

TRAVERSE SURVEY OF THE BOUNDARY OF THE IMPERIAL DELHI AREA.

By E. C. J. Bond.

An accurate survey of the boundary of the Imperial Delhi Area, on the west side of the Jumna river, was asked for by the Chief Engineer, Public Works Department, Delhi, for preparing a skeleton plan to be filed with the Record of Rights. Mr. Bond, Officer in charge No. 18 Party, was placed in charge of the Base Line Party in addition to his other duties and directed to carry out the work. A detachment was formed, under Mr. O. N. Pushong, who was transferred to the party from No. 2 Drawing Office, to execute a traverse to determine accurately the bearings and distances between the 775 pillars of the boundary, which is about 30 miles in length, and also between the 200 pillars demarcating the boundaries of 13 small areas of unacquired land, within the Imperial Delhi Area, termed "Islands."

The necessary equipment was collected at the head quarters office at Dehra Dūn and the officer in charge proceeded to Delli with the detachment on the 6th lecember 1915. On arrival at Delli a reconnaissance was begun for a triangulation which was reguired to afford suitable points for the control of the traverse.

The reconnaissance was completed on the 15 th December and a small experimental line of traverse was then run for a few dars under the supervision of the officer in charge to train the detachment in the mode of procedure. During this test the Superintendent of the Trigonometrical Surver inspected the detachment.

After starting the triangulation the officer in charge returned to Dehra Dūn on the 20th December 1915.

He insjected the detachment again in the field on the l9th January and also a few days puior to the completion of the work on the $20 t h$ March when the detachment returned to Dehra Dūn.

The triangulation falls within the limits of the boundary and embraces an area of $2 \underset{2}{2}$ square miles. It is based on the side Pir Ghaib T. S.-Tal Katora h. s. of the Great Are Meridional Series.

The sides of the triangles are from 1 to a miles in length. 1ψ stations and 1 intersected point were fixed. Three of the stations are boundary pillars, viz:-Nos. 369, 486 and 768, and four others to which the boundary was connected are close to the boundary, iz., Jumna Bridge s., Pahārganj s., Bhairon-ka-Mandar s. and Basti Baori s.

The rough sketeh in this report illustrates the triangulation and the boundary.
The main triangle Pir Ghaib T.S.-Tal Katora h.s.-Indarpat s. was observed on threc zeros with a change of face on each zero and the remaining triangles on two zeros. A 0 -inch transit theodolite by Troughton and Simms, reading to 10 seconds, was used.

Almost all the observations were taken to heliotropes and in only a few instances were opacque signals used, which were better for intersection at short distances than the dazzling flash of the helio.
Λ scuare tower on an eminence in the centre of the Imperial Delhi Area, named "Tower station A" by the Engineering Department, was well fixed by the triangulation. It is used by that department as the initial point from which all other points are laid out for the construction of the Government House buildings and for the alignment of roads to the north, south, east and west.

On the completion of the observations of the triangulation the traverse of the boundary was begrun on the 23rd December. It was started from pillar No. ${ }^{2}$ near the Jumua Bridge triangulation station, and carried along the boundary, counter-clockwise, up to pillar No. 776 near the right bank of the Jumna River opposite to Humáyun's tomb. The last two pillars of the boundary, Nos. 777 and 778, were washed away by the erosion of the river bank.

The point of origin used for the traverse is Pir Ghaib T.S., of the Great Arc Meridional Series, situated on the "Ridge" at Delhi.

The traverse was divided into 5 circuits, each from 4 to 6 miles in length, and a small circuit about a mile long. Each circuit was connected at its initial and terminal points to a station of the triangulation: by this means the accumulation of error in the traverse is reduced and a satisfactory adjustment effected. The positions of the six circuits are shown in the rough diagram accompanying this report.

Circuit No. 1, which includes pillars 2 to 191, started from Jumna Bridge s. (No. 1 pillar was washed away by the river) and was run alongside the eastern and outer walls of the Delhi fort and round by the southern walls up to near the Ajmer Gate whence it branched off to the east of Pahärganj and skirting round the southern limits of this part of the town closed on Pahārganj s.

Circuit No. 2, which includes pillars 192 to 369, commenced from Pahārganj s., ran up, in a northerly direction to the south-western limits of the Sadar Bazar quarter of the town and thence in a south-easterly direction and closed on pillar No. 369 of the boundary-one of the stations of the triangulation, situated a mile to the north of Täl Katora h.s.

Circuit No. 3, which includes pillars 370 to 486, began from pillar No. 369 and proceeded for about 2 miles west by south, then turaed southwards to a point a mile south of Todapur village and branched off from there to pillar No. 486 , which is common with the New Cantonment boundary pillar No. 43, where the circuit closed.

Circuit No. 1 , which includes pillars 487 to 637, began from pillar No. 486 (one of the triangulation stations) and followed the rocky ridge on which it is situated in a southerly direction for a mile whence it left the ridge and ran for 3 miles south by east, then turned to the north-east for a mile and closed on Basti Baori s.

Circuit No. 5, which includes pillars 638 to 768, commenced from Basti Baori s. and proceeded three quarters of a mile south by west, then turned in an easterly direction to the G. I. P. Railway line and followed it for half a mile north-west of Kilōkri Railway Station; branching off from this point to the north-east for half a mile it again turned north-west to within half a mile of Humāyūn's tomb where it turned off to the north-east and closed on pillar No. 768 (a station of the triangulation) situated on the "Bēla" land east of Humāyun's tomb.

Circuit No. 6, which inclules pillars 769 to 776 , began at pillar No. 768 and took a course due east to pillar No. 776 on the right bank of the Jumna river where the boundary ended; it then turned back and closed on the pillar from which it started.

Aloner circuit No. 1 it was not possible to observe at more than three out of the 168 pillars, as thove along the east and south of the fort were close up to its walls and others round Paharganj were also against walls of buildings and in the most filthy and inaccessible parts of the outskirts of this suburb. The traverse lines by the east walls of the fort had to be cleared through bulrushes which were most difficult to cut away and hampered the progress of the traverse to a considerable extent. The proximity of the boundary pillars to the walls of the fort and buildings necessitated many offsets and intersections being taken to them. For the lirst half of circuit No. z the pillars were mostly against buildings and for the remainder of the distance were over very rocky ground which made chaining difficult. In circuit No. 3 chaining was agan difficult owing to rocks and boulders and the country being cut up with ravines. Measuring in circuit No. 4 was also laborions until the rocky ridges were passed and the traverse entered Hat country, but here again other obstructions were met with in portions of ground covered with stunted shrubs of Indian crab-apple which had to be cut and cleared away for the chaining. In circuit No. :3, though the ground was very undulating, progress was easier, but again in circuit No. 6 slow headway was made owing to the thick growth of bulrushes which had to be cut away along the whole of this circuit.

Instruments tused for the traverse and the methorls employed. - A 6-inch transit theodolite by Troughton and Simms, reading to 10 seconds, was used. Particular care was taken to centre the theololite accurately over each traverse station. 'Two measures of each angle were taken as in ordinary traversing. The boundary pillars were intersected by the theoclolite in many instances where it was not possible or convenient to take offsets to them. Vertical angles were observed from one traverse station to another in order to reduce all measured distanefs to the horizontal; they were also taken for the same reason to boundary pillars, where found necessary.

The Abney level was used for any intermediate variations of slope.
Tracerse signals.-The signals used consisted of a tripod and staff, illustrated and described in the Records, Volume IX. They were designed by Mr. J. de Graaff IIunter for
the traverse of the Bombay City Survey. The traverse staff can be easily and quickly adjusted and is of great advantage in correctly intersecting a point over which it is centred, when the point itself is not visible, as the staff is perfectly vertical when carefully adjusted. The good results obtained in the angular measurements are largely due to the employment of these staves which have proved so useful in this traverse survey.

100-foot steel tape.-This is a flat tape about $1 / 5$ of an inch wide, graduated to feet along its whole length. It is wound on a small metal drum about 6 inches in diameter.

In measuring the distances between the traverse stations the tape was laid along the ground and carefully aligned. The near end of the tape is adjusted by bringing the zero exactly over the mark on the traverse station and is held down firmly. A spring balance is then attached to the forward end of the tape and a tension of 12 pounds applied and the complete tape length marked on a peg driven into the ground. The measurements were carried on in this manner from one peg to another until the tape approached the next traverse station where the measurement usually closed with a fractional part of the tape length which was read up to the last complete foot and any part in excess of the foot was measured by a metal scale and recorded to the $1 / 10$ of an inch.

The tape was compared at intervals during the survey with the Invar standard tape and there was found to be a constant difference of 0.35 of an inch in excess of the standard.

Offsets were measured by an ordinary steel tape which agreed remarkably well with the standard.

Work during the recess.-The detachment was employed during the recess seasou on the computation of the triangulation and traverse of the Imperial Delhi Area boundary.

In the computation of the triangles which are based on the side Pir Ghaib T.S.-Tal Katora h.s., 8 common sides were obtained and the average linear error from these is $\mathbf{0 . 1}$ foot per mile.

A great deal of work was involved in the computation of the direct distance and bearing from pillar to pillar owing to the many offsets and intersections taken to the boundary pillars.

The whole of the computations, including a list for publication, of the bearings and distances from pillar to pillar and the coordinates of each pillar, will be completed by the middle of December.

The average angular error of the traverse is 6 seconds and the linear error 1 in 9064 .

TABLE II.-Detals of Triangulation and Traversing by No. 19 Party at Delhi.

Triangulation.	(Instrument used, Diameter in inches		6
	Area in square miles		$22 \cdot 5$
	Square miles to each point fixed		$1 \cdot 5$
	Square miles to each height ...		$1 \cdot 5$
	Stations fixed		14
	Triangular error in seconds		11
	Linear error per mile in feet ...		$0 \cdot 1$
	Intersected points: No. of points fixed		1
	(Intersected points: Linear error per mile in feet		$0 \cdot 6$
Traversing.	Linear miles chaining ...		$29 \cdot 8$
	No. of stations at which theodolite was set un		4.57
	Angular error per station in seconds ...		6
	(Linear error per 1,000 ...		$0 \cdot 11$

APPENDIX

List of Survey of India Publications
(Corrected up to 30th September 1916)

PUBLICATIONS OF TH H

SURVEY OF INDIA

SYNOPSIS

A-HISTORY AND GENERAL REPORTS.

Memoirs					Page	
	99
	(General Reports	...		\ldots	...	99
Anntal Reports	$\{$ Extracts from Narrative Reports			99
	(Records of the Survey of India			100
Spectal Reports	100

B-GEODETIC WORKS OF REFERENCE.

Everests Great Arc	Books	\ldots	\ldots	\ldots	\ldots	\ldots	100
G.T.S. Volumes	\ldots	\ldots	\ldots	\ldots	\ldots	\ldots	100
Sinoptical Volumes	\ldots	\ldots	\ldots	\ldots	\ldots	\ldots	102
Triangulation Pamphets	\ldots	\ldots	\ldots	\ldots	103,111		
Levelling Pamphlets	\ldots	\ldots	\ldots	\ldots	\ldots	\ldots	103
Tide Tables	\ldots	\ldots	\ldots	\ldots	\ldots	\ldots	104

C-CATALOGUES AND INSTRUCTIONS.

Departmental Orders...	104
Catalngleg and Lists...	\ldots	\ldots	\ldots	105
Tables and Star Charts	\ldots	...	\ldots	...		105
Old Mantals ...	\ldots	\ldots	\ldots	\ldots	...	105
Stryey of India Hand.Boors		\ldots	...			106
Notes and Instrections						106

D-MISCELLANEOUS PAPERS.

Unclassified Papers	\{ Geography, Special Reports			...	106, 107	
			ppin		...	107
Professional Papens	\ldots	107
Departarental Papers	108
Professional Forms ...		\ldots	109

A-HISTORY AND GENERAL REPORTS.

(Obtainable from the Superintendent Map Publication, 13, Wood Street, Calcutta).

MEMOIRS.

1. A Memoir on the Indian Surveys. By C. R. Markham . India Office, London, 1871. Price Rs. 5 or $6^{s} / 8^{d}$.
2. Ditto (second edition). By C. R. Markham, C.B., F.R.S., India Office, London, 1878. Price Rs. $5-8$ or $7^{s} / 4^{d}$.
3. Abstract of the Reports of the Surveys and of other Geographical Operations in India, 1869-78.By C. R. Markham and C. E. D. Black, India Office, London. Published annually between 1871 and 1879. (Out of print).
4. A Memoir on the Indian Surveys, 1875-1890. By C.E.D. Black, India Office, London 1891. Price Rs. $5-8$ or $7 / 4^{d}$.

ANNUAL REPORTS.

Reports of the Revenue Branch . 1851 to 1877.-(1851-67 and 1869-70, out of print). Price Rs. 3 or 4^{5}.
Ditto Topographical Branch . 1860 to 1877.-(Out of print).
Ditto Trigonometrical Branch . 1861 to 1878.-(1861-71, out of print). Price Rs. 2 or $2 s / 8^{d}$.
In 1878 the three branches were amalgamated, and from that date onwards annual reports in single volumes for the whole department, are available as follows:-
(from 1877-1900 (1877.79, 1887-88, 1895-96 and 1897.98, out of print). at Rs. 3 or 4^{3} per volume.
(from 1900-1916 (1902-04 and 1906-08, out of print) at Rs. 2 or $2^{s} / 8^{d}$ per volume.
From 1900 onwards the keport bas been issued annually in the form of a condensed statement known as the "General Report" supplemented by fuller reports, which were called "Extracts from Narrative Reports" up to 1909, and since then have been styled "Records of the Survey of India." 'These fuller reports are available as follows:-
(a) "Extracts" Volumes at Rs. $1-8$ or 2^{3} per volume.

1900-01-Recent Improvements in Photo-Zincography. G. T. Triangulation in Upper Burma. Latitude Operations. Experimental Base Mensurement with Jäderin Apparatus. Magnetic Survey. Tidal and Levelling. Topography in Upper Burma. Calcutta, 1903. (Out of print).

1901-02-G. T. Triangulation in Upper Burma. Latitude Operations. Magnetic Survey. Tidal and Levelling. Topography in Upper Burma. Topography in Sind. Topography in the Punjab. Calcutta, 1904. (Out of print.)

1902-03-Principal Triangulation in Upper Burma. Topography in Upper Burma. Topography in Shan States. Survey of Sāmbbar Lake. Latitude Operations. Tidal and Levelling. Magnetic Survey. Introduction of the Contract System of Payment in Traverse Surveys. Traversing with the Subtense Bar. Compilation and Reproduction of Thāna Maps. Calcutta, 1905.

1903-04-Magnetic Survey. Pendulum. Tidal and Levelling. Astronomical Azimuths. Utilization of old Traverse Data for Modern Surveys in the United Provinces. Identification of Snow Peaks in Nepal. Topograpbical Surveys in Sind. Notes on town and Municipal Surveys. Notes on Riverain Surveys in the Punjab. Calcutta, 1906.

1904-05-Magnetic Surrey. Pendulum Operations. Tidal and Levelling. Triangula. tion in Baluchistān. Survey Operations with the Somaliland Field Force. Calcutta, 1907.

1905-06-Magnetic Surveg. Pendulum Operations. Tidal and Levelling. Topography in Shan States. Calcutta, 1908.

1906-07-Magnetic Survey. Pendulum Operatione. Tidal and Levelling. Triangulation in Baluchistãn. Astronomical Latitudes. Topography in Shan States. Calcutta, 1909.

1907-08-Magnetic Survey. Tidal and Levelling. Astronomical Latitudes. Pendulum Operations. Topography in Shan States. Calcutta, 1910.

1808-08-Magnetic Surrey. Tidal and Levelling. Pendulum Operations. Triangulation. Calcutta, 1911.

ANNUAL REPORTS-(Continued).

(b) "Records of the Survey of India" at Ks. 4 or $5 \% / 4^{d}$ por volume, except where otherwise stated.
Vol. I-1909-10-Annual reports of parties and offices Calcuttn, 1912.
II-1910-11-Annual reports of parties and offices Calcutta, 1912.
III-1911-12-Annual reports of parties and offices Calcutta, 1913.
1V-1911-13-Explorations on the North-East Frontier Calcutta, 1914.
V-1912-13-Annual reports of parties and offices Calcutta, 1914.
VI-1912-13-Link connecting the Triangulations of India and Russia. Dehra Dūn, 1914:
VII-1913-14-Annual reports of parties and offices Calcutta, 1915.
VIII- $\left\{\begin{array}{l}1865-79-P a r t ~ I ~ \\ 1879\end{array}\right\}$ Explorations in Tibet and
Dehra Dūn, 1915.
IX-1914-15-Annual reports of purties and offices $\quad . . \quad$... Calcutta, 1916.
Price of each Part Rs. 4 or $5^{5} / 4^{d}$.
X—1915-16-Annual reports of parties and offices ... Dehra Dūn, 1917.

SPECIAL REPORTS.

1. *Report on the Mussoorie and Landour, Kumaun and Garhmāl, Ranilshet and Kosi Falley Surveys estended to Peshārar and Khägān Triangulation during 1869-70 By Major T. G. Nontgomerie, R.E. (Out of print).
2. *Account of the Surrey Operations in connection with the Mission to Farrkand and Kashghar in 1873.74. By Captain Henry Trotter, R.E. Calcutta, 1875.
3. Report on the Trans-Himalayan Explorations during 1869. (Out of print).
4. Report on the Trans-Himālayan Explorations during 1870. Dehra Dūn, 1871. (Out of print).
5. Report on the Trans-Himālayan Explorations during 1878. Calcutta, 188c. (Out of print).
"Notes of the Survey of India" are issued monthly. (Stocked in the Survegor General's Office, Calculta). Price as. 2 or 2^{d}.

B-GEODETIC WORKS OF REFERENCE.

(Obtainable from the Superintendent of the Trigonometrical Survey, Dehra Dün, U.P.)

EVEREST'S GREAT ARC BOOK.

1. An account of the Measurement of an Arc of the Meridian between the parallels of $18^{\circ} 3^{\prime}$ and $24^{\circ} 7^{\prime} \quad \ldots \quad$ East Inilia Company, Loudon, 1830. (Out of print.)
2. An account of the Measurement of two Sections of the Meridional Arc of India, bounded by the parallels of $18^{\circ} 3^{\prime} 15^{\prime \prime}, 24^{\prime} 7^{\prime} 11^{\prime \prime}$, and $29^{\circ} 30^{\prime} 48^{\prime \prime}$. East India Company, London, 1847. (Out of print.)
3. Engravings to illustrate the above. London, 1847, (Out of print.)
G.T.S. VOLUMES-describing the Operations of the Great Trigonometrical Survey. Price Rs. $10-8$ or 14^{\prime} per volume, except where othervise stated.
Vol. I-Standards of Measure and Base-Lines, also an Introductory Account of the early Operations of the Survey, during the period of 1800-1830.

Dehra Dūn, 1870. (Out of print.)
Appendix No. 1. Description of the method of comparing, and the apparatus empluyed.
Appendix No. 2. Comparisons of the Lengths of 10 feet Standards \mathbf{A} and B, and determinations of the Difference of their Expaneions.
Appentix No, 3. Comparisons between the 10 -feet Standards $I_{B} I_{S}$ and A.
Appendix No. 4. Comparisons of the 6-inch Brass Scales of the Compensated Microscopes,
Δ ppendix No. 5. Determination of the Length of the Inch [7:8] on Cary's 3.foot Brase Sicale.
Appendix No. 6. Compariaons between the 10 -feet Standard Bars I_{S} and A for determining the Expansion of bar A.
Appendix No. 7. Final determination of the Differences in Length between the 10 -foet Standards $I_{B} I_{s}$ and A.
Appendis No. 8. On the Thermometers employed with the Standards of Length.
Appendix No. 9. Determination of the Lengthe of the Sub-divisions of the Inch [a.b].
Appendix No. 10. Repart on the Practical Errors of the Measurement of the Cape Comorin Base.
II-A History and General Description of the Reduction of the
Appeadix No. 1. Inveatigatione applying to the Indian Geodesy.
Appendix No. 2. The Micrometer Microscope Theodolites.
Apfedix No. 3. On Observations of Terrestrial Refraction at certain stations situated on the plains of the Ponjab.
Appendix No. 4. On the Periodic Errors of Gradnated Circles, \&c.
Appendis No. 6. On certain Modifications of Colonel Everest's System of Observing introdaced to meet the specialities of particalar instraments.
Appendix No. 6. On Tidal Observations at Karrachee in 1855.
Appeodix No. 7. An alternative Method of obtaining the Formala in Chapters VIII and XV employed in the Redaction of Triangalation.-Additional Formalmo and Demonstrations.

G.T.S. VOLUMES-(Continued).

Appendix No. 8. On the Dispersion of Circuit Errors of Triangulation after the Anglea have been corrected for Figaral conditions.
Appendix No. 9. Corrections to azimuthal Observations for imperfect Instramental Adjustments.
Appendix No. 10. Reduction of the N.W. Quadrilateral-the Non-Circuit Triangles and their Final Figaral Adjustments.
Appendix No. 11. The Theoretical Errors of the Triangulation of the North. Weat Quadrilateral.
Appendix No. 12. Simaltaneous Keduction of the N.W. Quadrilateral-the Compatations.
III-North-West Quadrilateral.-The Principal Triangulation, the Base-Line Figures, the Karāchi Longitudinal, N. W. Himālaya, and the Great Indus Series. Dehra Dūn, 1873. (Out of print.) 1V-North-West Quadrilateral-The I'rincipal Triangulation, the Great ArcSection $24^{\circ}-30^{\circ}$, Rahūn, Gurhāgarh and Jugi-Tila Meridional Series and the Sutlej Series. Dehra Dūn, 1876.
IVA-North-West Quadrilateral-The Principal Triangulation, the Jodhpore and the Eastern Sind Meridional Series with the details of their Reduction and the Final Results. Dehra Dūn, 1886.
V-Pendulum Operations of Captains J. P. Basevi and W. J. Heaviside, and their Keduction. Delıra Dūn and Calcutta, 1879.
Appendir No: 1. Account of the Remeneurement of the Length of Kater's Pendulum at the Ordnance Survey Office, Soutbampton.
Appendix No, 2. On the Relation between the Indian Pendulum Operations, and those which have been conducted elsewhere.
Appendiz No. 3. On the Theory, Use and History of the Convertible Pendulum.
Appendir No. 4. On the Length of the Seconds Pendulum deterwinable from Materiala now existing.
Appendix No. 6. A Bibliographical List of Works relating to Pendulum Operations in connection with the Problem of the Figure of the Earth.
VI-South-East Quadrilateral-The Principal Triangulation and Simultaneous Reduction of the following Series:-Great Arc—Section 18° to 24°, the East Coast, the Calcutta and the Bider Longitudinal, the Jabalpur and the Bilāspur Meridionals. Dehra Dūn, 1880, (Out of print.)
VII-North-East Quadrilateral-General Description and Simultaneous Reduction. Also details of the following five series:-North-East Longitudinal, the Budhon Meridional, the Rangir Meridional, the Amua Meridional, and the Karāra Meridional. Dehra Dūn, 1882.
Appesdix No. 1. The Detaile of the Separate Reduction of the Budhon Meridional Series or Series J of the North-East Quadrilateral.
Appendix No. 2. Redaction of the North-Cast Quadrilateral, The Non-circuit Triangles and their Final Figaral Adjostments.
Appendiz No. 3. On the Theoretical Errors Generated Respectively in Side, Azimath, Latitude and Longitude in a Chain of Triangles.
Appendix No. 4. On the Dispersion of the Residual Errors of a Simultaneons Redaction of Several Chains of Triangles.
Vol. VIII-North-East Quadrilateral-Detaila of the following eleven series:Gurwāni Meridional, Gora Meridional, Hurīlāong Meridional, Chendwär Meridional, North Pārasnāth Meridional, North Malūncha Meridional, Calcutta Meridional, East Calcutta Longitudinal, Brahmaputra Meridional, Eastern Fron-tier-Section 23° to 26°, and Assam Longitudinal.

Dehra Dūn, 1882.
IX-Telegraphic Longitudes-during the years 1875-77 and 1880-81.
Dehra Dūn, 1883.
Appendix to Part I, I, Determination of the Geodetic Elements of Longitade Stations.
2. Descriptions of Points used for Longitade Stations.
3. Comparison of Geodetic with Electro-Telegraphic Arcs of Longitude.
4. Circait Errors of Observed Arcs of Longitade.
5. Results of Idiometer Observations made daring Season 1880-81.

Appeudix to Part II. 1. Sitaations of the Longitude Stations at Bombay, Aden and Suez.
2. Survey Operations at Aden.
3. Results of the 'Triangnlation.
4. Right Ascensions of Cloch Stars.

X-Telegraphic Longitudes-during the jears 1881-82, 1882-83, and 1883.84. Dehra Dūn, 1887.
Appendix to Part I. 1. Determination of the Geodetic Elements of the Longitade Stations.
2. Descriptions of Stations of the Connecting Triangulation and of those at which the Longitude Observations were taken.
3. On the Errora in $\Delta \mathrm{L}$ cansed by Armatare-time and the Retardation of the Electric Carrent.
4. On the Rejection of some donbtfal Arcs of Season 1881-82.
5. On the probable Canses of the Errcrs of Arc-measarements, and on the Nature of the Defects in the Transit Instramente which might produce them,

G.T.S. VOLUMES-(Continued).

XI-Astronomical Latitudes-during the period 1805-1885 Dehra Dūn, 1890 .
XII-Southern Trigon-General Description and Simultaneous Reduction. Also details of the following two series:-Great Arc-Section 8° to 18°, and Bombay Longitudinal.

Dehra Dūn, 1890.
YIII-Southern Trigon-Details of the following five series:-South Konkan Coast, Mangalore Meridional, Madras Meridional and Coast, South-East Cost, and Madras Longitudinal. Dehra Dūn, 1890.
IIV-South-West Quadrilateral—Details of Principal Tringulation and Simultaneous Reduction of its component series. ... Dehra Dūn, 1890.
XF-Telegraphic Longitudes-from 1885 to 1892 and the Revised Resulte of Volumes IX and X: also the Simultaneous Reduction and Final Results of the whole Operations.
... Dehra Dūn, 1893. Appendir No. 1. Determination of the Geodetic Elements of the Longitude Stations.
Appendix N. . On Reterdation (n numerical mistake was made in this uppendix in the conversion of n formule from kilometres to miles: the conclusions drawn cannot therefore be upheld).
XVI-Tidal observations-from 1873 to 1892, and the Methods of Reduction.
Dehra Dūn, 1901.
XVII-Telegraphic Longitudes—during the years 1894-95.96. The Indo-European Arcs from Karāchi to Greenwich.

Dehra Dūn, 1901.
Appendir No. 1. Descriptions of Points used for Longitude Stations. Appendix No. 2. The Longitude of Madras.
IVIII-Astronomical Latitudes from 1885 to 1905 and the Deduced Values of Plumb-line Deflections.

Dehra Dūn, 1906.
Appendir No. 1. On Deflections of the Plumb-line in India
Appendix No. 2. Determination of the Geodetic Elements of the Latitude Stations of Bajamara, Bahuk, Lambatach and Kidarkunta.
Appendix No. 3. On the ($\mathrm{N}-\mathrm{S}$) Difference exhibited by Zenith Sector No. I.
Appendix No. 4. On the Value of the Micrometer of the Zenith Teleacope.
Appendir No. 5. On the Azimuth Observations of the Great Trigonometrical Survey of India.
A ppendix No. 6. A Catalogue of the Publications of the Great Trigonometrical Survey of Indie. Appendix No. 7. On the combination weights employed.
XIX-Levelling of Precision in India from 1858 to 1909.
Dehra Dūn, 1910.
Appendix No. 1. Experiment to test the chauges, dae to Moistare and Temperatare, in the Length of a Levelling staff.
Appendix No. : On the erection of Stnodard Bench-Marks in India during the years 1904-1910.
Appendix No.3. Memorandum on the steps taken in $1905 \cdot 1910$ to enable movements of the Earth's crast to be detected.
Appendix No. 4. Dyoamic and Orthometric corrections to the Bimalayan levelling lines and circuit; and a consideration of the order of magnitude of possible refraclion errors.
Appendix No. 5. The passage of rivers 1 y the Levelling Operations.
Appendix No. 6. The Errors of the Trigonometrical values of Heights of stations of the principal triangalation.
Appendix No. 7. The effect on the spheroidal correction of employing Theoretical instead of Observed valaes of Gravity and a discassion of different formula giving variation of Gravit. with Latitnde and Height.
Appendix No. 8. On the rliscrepancy hetween the Trigonometrical and spirit-level values of the difference of beight between Dehra Dūn and Massooree.
XIXA-Bench-Marks on the Southern Lines of Levelling. Dehra Dūn, 1910. Price Rs 5 or $6^{*} / 8^{\prime}$.
IIXB-Bench-Marks on the Northern Lines of Levelling. Dehra Dūn, 1910. Price Rs. 5 or $6^{s} / Q^{d}$.
SYNOPTICAL VOLUMES—giring charts. descriptions of stations, and full synopses of coordinates and heights of all stations and points fixed by Principal and Secondary Triangulation**

Price Rs. 2 nr 2*/8d per volume unless otherwise stated.
Italic figures are in chronological order and refer to the Index Chart of the G. T. Survey.
North-West Quadrilateral
Fol. I-The Great Indus Series (32). Dehra Dūn, 1874.
II-The Great Arc-Section 24° to $30^{\circ}(6)$. Dehra Dūn, 1874.
III-The Karachi Longitudinal Seriea (2:5). Dehra Dūn, 1874.
IV-The Gurhagarh Meridional Series (23).]ehra Dūn, 1875.
V-The Rahìn Meridional Series (33). Dehra Dūn, 1875.
VI-The Jogi-Tila Meridional Series (37'). and the Sutlej Meridional Series (45). Dehra Dūn, 1875.
FII-The N. W. Himalayn Series (22) and the Triangulation of Kashmir (36). Dehra Dūn. 14 テ̄9.
VIIA-The Jodhpore Meridional Series (62) and the Eastern Sind Meridional Series (6t). Dehra Dün, 1587.

- special charts can be supplicd of those series fur which no synoptical Volumea are available, vir. f- all

[^6]
SYNOPTICAL VOLUMES—(Continued)

South-East Quadrilateral

Vol. VIII-The Great Arc-Section 18° to 24° (8). Dehra Dùn, 1878.
IX-The Jabalpur Meridional Series (53). Dehra Dūn, 1878.
X—The Bider Longitudinal Series (43). Debra Dūn, 1880.
XI-The Bilāspur Meridional Series (58). Dehra Dūn, 1880.
XII-The Calcutta Longitudinal Series (5). Dehra Dūn, 1880
XIII—The East Coast Series (24). Dehrn Dūn, 1880.
XIIIA-The South Pārasnāth (1) and the South Malūncha Meridional Series (17). Dehra Dūn, 1885.

North-East Quadrilateral

Vol. XIV-The Budhon Meridional Series (2). Dehra Dūn, 1883.
XV—The Rangir Meridional Series (4). Dehra Dūn, 1883.
XV1-The Amua Meridional Series (3) and the Karāra Meridional Series (12). Dehra Dūn, 1883.
Vol. XVII-The Gurnāni Meridional Series (19) and the Gora Meridional Series (15). Dehra Dūn, 1883.
XVIII-The Hurīlāong Meridional Series (21) and the Chendwär Meridional Series (14). Dehra Dūn, 1883.
XIX-The North Pārasnāth (27) and the North Malūncha Meridional Series (13). Dehra Dün, 1883.
XX—The Calcutta Meridional (16) and the Brahmapūtra Meridional Series (56). Dehra Uūn, 1883.
XXI-The Fast Calcutta Longitudinal (48) and the Eastern Frontier Series- $\mathbf{2 3}{ }^{\circ}$ to 26° (44). Dehra Dūn, 1883.
XXII—'The Assam Valley Triangulation, E. of Meridian 92° (55). Dehra Dūn, 1891. (Out of print.)
XXXV—The North-East Longitudinal Series (20) with the volume of charts. Dehra Dūn, 1909. Price Rs. 5 or $6^{3} / 8^{d}$.

Southern Trigon

Vol. XXIlI—The South Konkan Coast Series (11). Dehra Dūn. 1891.
XXIV - The Mangalore Meridional Series (49). Dehra Dūn, 1891.
XXV -The South-Enst Coast Series (6.3). Dehra Dūn, 1891.
XXYI-The Bombay Longitudinal Series (7). Dehra Dūn, 1892.
XX才ll—'Ilıe Madras Lougitudinal Series (54). Dehra Dūn, 1892.
XXVIII—The Madras Meridional and Const Series (46). Dehra Dūn, 1892.
XXIX—The Great Arc Meridional Series-Section 8° to $18^{\circ}(9)$. Delıra Dūn, 1899.

South-West Quadrilateral

Vol. XXX.-The Abu Meridional Series (26) and the Gujarat Longitudinal Series (29). Dehra Dūn, 1892.
XXXI —'The Khānpisura Meridional Series (18). Dehra Dūn, 1893.
XXXII -The Singi Meridional Series (10). Dehra Dūn, 1893.
XXXIII-The Cutch Const Series (35). Dehra Dūn, 1893. Addendum to the Cutch Const Series, (Indus delta) (separate pamphlet). Dehra Dūn, 1902.
XXXIV—The Kāthiā̄ār Meridional Series (28). Dehra Dūn, 1894.
TRIANGULATION PAMPHLETS with charts, are now being issued for every aquare degree, giving the resulte of all minor triangulation, as well as that shown in Synoptical Volumes Price Re. 1 or $1^{s /} / 4^{d}$ per pamphlet. Vide page 111.
LEVELLING PAMPHLETS-giving heights and descriptions of all Bench-marks, fixed by levelling of Precision in India and Burmn. Each pamphlet embraces an area of $4^{\circ} \times 4^{\circ}$ and the numbering is the same as that of the corresponding sheets of the $1 / \mathrm{Mmap}$ of India. Each is illustrated by a map of the area. Price Rs. 2 or $25 / 8^{t}$ per pamphlet except where other wise stated.

Pamphlet	'os.	Latiluce.	Longituite.	I'ublished	Pamp	plilet	Nos.	Latitude.	Longitade	Pabl	
Indin	34	28-32 ${ }^{\circ}$	$64^{\circ}-68^{\circ}$	Delıra Dūn,	, 1916.	India	57	$12^{\circ}-16^{\circ}$	$76^{\circ}-80^{\circ}$	Debra	1912.
"	3%	$24^{\circ}-29^{\circ}$	$64^{\circ}-68^{\circ}$	"	1911.	,	58	$8^{\circ}-12^{\circ}$	$76^{\circ}-80^{\circ}$		1914.
	88	$32^{\circ}-36$	$68^{\circ}-72^{\circ}$.	1912.	,	63	$24^{\circ}-28^{\circ}$	$80^{\circ}-8 t^{\circ}$		1911
"	89	$2 R^{\prime}-32^{\circ}$	$68^{\circ}-72^{3}$	"	1913.						
"		Addenilum			(at press)	"	64	$20^{\circ}-24^{\circ}$	$80^{\circ}-84^{\circ}$	"	1912
"	40	$24^{\circ}-29^{\circ}$	68.7 -720	"	1911	"	65	$15^{\circ}-20^{\circ}$	$80^{\circ}-8 t^{\circ}$	",	1913.
,	41	$\underline{20}-24^{\circ}$	$68^{\circ}-72^{\circ}$		1913	"	66	$12^{\circ}-16^{\circ}$	$80^{\circ}-84^{\circ}$		1912.
"	43	$32^{3}-36^{3}$	$72^{\circ}-76^{\circ}$	"	1913	,	72	$24^{\circ}-28^{\text {b }}$	$84^{\circ}-88^{\circ}$		1912.
"	,	Addendam		"	1915	"	73	$20^{\circ}-21^{\circ}$	$84^{\circ}-88^{\circ}$	"	1913.

LEVELLING PAMPHLETS-(Continued)

Pamphlet Nos. Lntitade. Longitade. Pablished.

India	44	$28^{\circ}-32^{\circ}$	$72^{\circ}-76$	Dehra Dūn,	1912	India	74	$16^{\circ}-20^{\circ}$	\$4 $4^{\circ}-88^{\circ}$	Dehra Dūn,	1918.
,	45	$24^{\circ}-28^{\circ}$	$72^{\circ}-70^{\circ}$	"	1911	"	78	$24^{\circ}-28^{\circ}$	$88^{\circ}-92^{\circ}$,	1912.
"	46	$20^{\circ}-24^{\circ}$	$72^{\circ}-76^{\circ}$	"	1912	"	..*	Addendam			1916.
"	47	$16^{\circ}-20^{\circ}$	$72^{\circ}-76^{\circ}$,	1912	"	79	$20^{\circ}-24^{\circ}$	$88^{\circ}-92^{e}$	"	1912.
"	\cdots	Addendum		,	1915	"		Addendom		"	1916.
-	48	$12^{\circ}-16^{\circ}$	$72^{\circ}-76^{\circ}$	"	1912	"	83	$24^{\circ}-28^{\circ}$	$95^{\circ}-96^{\circ}$	"	1912.
"	49*	$8^{\circ}-12^{*}$	$72^{\circ}-76^{\circ}$	"	1911	Barma	84	$20^{\circ}-24^{\circ}$	$92^{\circ}-96^{\circ}$	"	1911.
"	59	$32^{\circ}-36^{\circ}$	$76^{\circ}-80^{\circ}$	"	1912	"	Addendam			",	1914.
"	53	$28^{\circ}-32^{\circ}$	$76^{\circ}-80^{\circ}$	'	1912	"	85	$16^{\circ}-20^{\circ}$	$92^{\circ}-96^{\circ}$, 1	1913.
"	54	$24^{\circ}-28^{\circ}$	$76^{\circ}-80^{\circ}$	"	$1914 \dagger$	"	92	$24^{\circ}-28^{\circ}$	$96^{\circ}-100^{\circ}$		1911.
"	55	$20^{\circ}-24^{n}$	$76^{\circ}-80^{\circ}$	"	1912	"	93	$20^{\circ}-24^{\circ}$	$96^{\circ}-100^{\circ}$		1911.
	56	$16^{\circ}-20^{\circ}$	$76^{\circ}-80^{\circ}$	"	1912	,	94	$16^{\circ}-20^{\circ}$	$96^{\circ}-100^{\circ}$, 1	1911.
* Pri	Re.	1 or $1 / 4^{\text {d }}$.			Edition (enlarged).						

TIDE TABLES-

- Since 1881 Tidal predictions based on the observations of the Survey of India have been published annually by the India Office, London. The tables give the time and height of high and low water for every day in the year at each port, and are published early in the previous year. Current tables are available for the following 40 ports :-

Western Ports-

Suez (Egypt)-Perim—Aden-Maskat—Būshire—Karachi-Okha Point and Bet Harbour (Gulf of Cutch)-Porbandar-Port Albert Victor (Kāthiāwār)—Bhaunagar-Bombay (A pollo Bandar) - Bombay (Prince's Dock)-Mormugao (Goa)-Kärwār-Beypore (near Calicut)-Cochin-Minicoy (Indian Ocenn)-Tuticorin-Pāmban Pass (Island of Rāıneswaram).

Eastern Ports-

Galle (Ceylon)—Triucomalee (Ceylon)—Colombo (Ceylon)—Negnpatam—Madras-Co-canāda-Vizagnpatam-False-Point-Dublat (Saugor Island)-Diamond Harbour-Kidderpore (Calcutta)-Chittagong-Akgab-Diamond Island (Burma)-Bassein-Elephant Point (Burma) -Rangoon-Amherst-Moulmein-Mergui-Port Blair.

The Tide Tables are issued in the following forms:-
(i) Combined Volume-including all the above ports-Price Rs. 4 or $5 \% 4^{d}$.
(ii) Part I and Part II-including Western and Eastern ports respectivelyEac! part Rs. 2 or $2 \% / 8^{d}$.
(iii) Pamphlets-giving separately the tables for individual ports or for small local eroups of ports-Price varying from As. 8 or 8^{d} to Rs. 1-8 or 2s per pamphlet.

C-CATALOGUES AND INSTRUCTIONS.

(Obtainable from the Superintendent, Map Publication, 13, Wood Street, Calcutta).

DEPARTMENTAL ORDERS.

From 1878 to 188. . the Surveyor General's orders were all issued as "Circular Orders." Since then they have been classified as follows :-

(l-Goverment of India Orders (called "Circular Orders"
 From 1885 to 1904 as $\{$ 2-Departmental Urders (Administrative).
 3-Departmental Orders (Professional).

In 1904 the various orders issued since 1878 were reclassified as follows:-

	Number to date.
1.-Government of India Orders-	677
2.-Circular Orders (Administrative).-	350
3.-Circular Orders (Professional).-	190
4.-Departmental Orders. (appointments, prometions, transfers, etc)	

These are numbered serially and had reached the above numbers by September 1916. Government of India Ordrr:s and Circular Orlers (Administrative) are bound up in volumes from time to time, as shown below, while Circular Orders (Profrssional) are gradually incorporated in the Survey Hand-books. Besides the above, temporary orders have been issued since 1910 in the form of "Circular Memos." These either lapse or become incorporated in some more permanent form, and are therefore only numbered serially for each year. Bound volumes of orders are arailable as follows:-

1. Gorernment of India Orders (Departmental) 1878-1903.-Calcutta, 1904.

Ditto	ditto	$1904-1908$. -Calcutta, 1909 . (Out of print).
Ditto	ditto	$1909-1913$. CCalcutta, 1915.

2. Circular Orders (Administrative) 1878-1903. -Calcutta, 1904. Price Rs. 1-4 or 1! $/ 8^{\prime}$.
Ditto ditto 1904-1908.—Calcutta, 1909. \because As. 6 or 6^{d}.
Ditto ditto 1909-1913.-Calcutta, 1915. ", As. 8 or 8^{d}.

DEPARTMENTAL ORDERS-(Continued)

3. *Regulations on the subject of Language Examinations for Officers of the Survey of India. Calcutta, 1914.
4. * Map Publication Orders 1908-1914 (Superintendent, Alap Publication's Orders.)Calcutta, 1914.
5. Specimens of papers set at Examinations for the Provincial Service.-Dehra Dün, 1903.-(Out of print).

CATALOGUES AND LISTS.

1. Catalogue of Maps published by the Survey of India. Second edition. Calcutta, 1915. Price Re. 1 or $1^{s} / 4^{d}$.

NOTE.-Lists are issued quarterly of new maps published during each quarter, and similar lists for each month appear in the monthly NOTES OF THE SURVEY OF INDIA.
2. Catalogue of Maps of the Bombay Presidency, Calcutta, 1913. Price As. 4 or 4^{d}.
3. List of Survey of India publications (published annually)-Gratis.
4. Price List of Mathematical Instrument Offlce. Calcutta, 1913. Gratis.
5. Catalogue of Books in the Head-Quarters Library, Calcutta, 1901. (Out of print).
6. Catalogue of scientific Books and Subjects in the Library of the Trigonometrical Survey

Office. Dehra Dūn, 1908. Price Re. 1 or 11^{4}.
7. Catalogue of Books in the Library of the Trigonometrical Survey Ofice. Delira Dün, 1911. (Out of print.)
8. Green Lists-PART I—List of officers in the Survey (hulf yearly to dates 1st January and 1st July)-Calcutta. Price As. 6 or 6^{d}.
PAKT II-History of Services of Olficers of the Survey of India (annually to date 1st Juty)-Calcutta. Price $A s .8$ or \mathcal{S}^{d}.
9. Blue Lists-Ministerial and Subordinate Establishments of the Survey of India.

PART I-Head quarters and Dehra Dūn offices (published anmally to date lst April)-Calcuta. Price Re. 1 or $1 / 1 /{ }^{d}$.
PAR'I II-Circles and parties (published annually to date 1st January).-Calcutta.
Price Rs. 1.8 or 2 .
(Nos. 8 and 9 are stocked in the Surveyor (Heneral's Offee, Calcutta).
TABLES AND STAR CHARTS.

1. Auxiliary Tables-to facilitate the calculations of the Surrey of India. Fourth Edition, revised. Dehra Dūn, 1906. Price Rs. 4 or $5^{\prime} / 4^{\prime \prime}$ in cloth and calf, or Rs. 2 or $2 / / \mathcal{S}^{d}$ in paper and boards.
2. Auxiliary Tables-to facilitate the calculations of the Survey of India. Fifth Edition, revised and extended. PAR'I I-Graticules of Maps. Dehra Dūn, 1916. Price Re. 1 or $1^{\kappa} / 4^{d}$.
3. Tables for Graticules of Maps. Extracts for the use of Explorers. Dehra Dūn, 1910. Price As. 4 or 4^{d}.
4. * Metric Weights and measures and other Tables. Photo-Litho Uffice. Calcutta, 1889. (Out of print.)
5. Logarithmic Sines and Cosines to 5 places of decimals. Dehra Dūn, 1886. Price As. 4 or 4^{d}.
6. Logarithmic Sines, Cosines, 'langents and Cotangents to 5 places of decimals. Dehra Dūn, 1915. Price Re. 1 or $1 \% 4^{d}$.
7. Common Logarithms to 5 places of decimals. Price As. 4 or 4^{d}.
8. Table for determining Heights in Traversing. Delıra Dūn, 1898. Price As, 8 or 8^{d}.
9. Tables of distances in Chains and Links corresponding to a subtense of 20 feet. Dehra Dūn, 1889. Price As. 4 or 4^{4}.

$10 .^{*}$	Ditto	ditto	10 feet.	Calcutta, 1915.
11.	Ditto	ditto	8 feet.	Ditto.

12. Star Charts for Intitude 20° N. By Colonel J. R. Hobday, I. S.C. Calcutta, 1900. (Out of print).
13. Star Charts for latitude 30° N. By Lt.-Col. Burrard, R.E., F.R.S. Dehra Dūn, 1906. Price Rs. $1-8$ or 2^{2}.
14. * Catalngue of 21.9 Stars for epoch Jan. 1, 1892, from observations by the Survey. Dehrn Dūn, 1893. (Out of print.)

15 * Rainfall from 1868 to 1903 , measured at the G. T. Survey Office. Dehra Dūn. (Out of print.)

OLD MANUALS.

1. A Manual of Surveying for India, detailing the mode of operations on the Revenue Surveys in Bengal and the North-Western Provinces. Compiled by Captains R, Smyth and H. L. Thuillier. Calcutta 1851. (Out of print.)
2. Ditto ditto ditto. Second Edition. London, 1855.

Price Rs. 4 or $5 \% 4^{\text {d }}$.
3. A Manual of Surveying for India, detailing the mode of operations on the Trigonometrical, Topographical and Revenue Surveys of India. Compiled by Colonel H. L. Thuillier, C.S.I., F.R.S, and Lieutenant.Colonel R. Smyth. Third Edition, revised and enlarged. Calcutta, 1875. (Out of print.)

SURVEY OF INDIA HAND-BOOKS.

1. Hand-book of General Instructions, Fourth Edition. Calcutta, 1914. Price Rs. 3 or 4:
2. Hand-book, Trigonometrical Branch, Second Edition. Calcutta. (Out of print.)
3. Fand-book, Topographical Branch, Third Edition. Calcutta, 1905. (Out of print.)
*The following chapters of a revised edition of the Topo. Hand-book are available for issue in pamphlet forms:- Price $\mathbf{A s} .8$ or 8^{d} per copy or Rs. 3 or 4^{s} per set.
Chapter I-Introductory.
" II—Conatitution and Organization of a Survey Party.
, III-Triangulation and its Computation.
" IV-Traversing and its Computation.
" V-Plane-tabling.
" VI-Fair Mappiug.
" VII-Trans-froutier
, VII—Trans-froutier Reconnaissance.
, 1 X -Forest Surreys and Maps.
" X -Reproduction of the Sheets of the oue-inch Map.
4. *Photo-Litho Offlce, Notes on Organization, Methods and Processes, Calcutta, 1914.
5. The Reproduction (for the guidance of other Departments), of Maps, Plans, Photography, Diagrams, and Line illustrations. Calcutta, 1914 Price Rs. 3 or 4^{3}.

NOTES AND INSTRUCTIONS.

Drawing and Paper.

1. *Notes on the Drawing of New Standard Maps, By Major W. M. Coldstream, R.E. Calcutta, 190 S .
2. Notes on Printing Papers suitable for Maps, and ou Whatman Drawing Paper. By Major W. IF. Coldstream, R. E. Calcutta, 1911.

Printing and Field Litho processes.

3. *Report on Rubber Offset Printing for Maps. By Major W. M. Coldstream, R. E. Calcutta, 1911.
4. "Notes on the "Yandyke" or Direct Zinc Printing Process, with details of Apparatus and Chemicals required for asmall section. Compiled in the Photo and Litho Office, Survey of India. Calcutta, 1918. Price Re. 1 or $1 \% 4^{4}$.
5. *Report on the Working of the Light Field Litho Press (experimental) in November and December 1910 with Appevdices. By Lieutenant A. A. Chase, R. E., Calcutta, 1911.
(1) Notes on some of the Methods of Reproduction suitable for the Field.
(2) Suggested Equipment Tables for the Light Field Litho Press (experimental).
6. *leport on a trial of the equipment of the 1st (Prince of Wales' Own) Sappers and Miners for reproducing maps in the field. By Lientenant A. A. Chase, R. E. Calcutta, 1912.
Base Lines and Magnetic.
7. *Notes on use of the Jäderin Base-line Apparatus. Dehra Dun. 1004.
8. *Miscellaneous Papers relating to the Measurement of Geodetic Bases by Jäderin Invar Apparatus. Delira Dun, 1912.
9. *Instructions for taking Magnetic Obserrations. By J. Eccles, M. A. Dehra Dūn, 1896,
10. Rectangular Coordinates - On a Simplification of the Computations relating toBy J. Eccles, M. A. Dehra Dūn, 1911. Price Re 1 or $1^{s /} 4^{d}$.
11. For Explorers. Notes on the use of Thermometers, Bnrometers and Hypsometers with Tables for the Computation of Heights. By J. de Graaff Hunter, MI. A. Dehra Dūn, 1911,

D-MISCELLANEOUS PAPERS.

(Obtainathe from the superintendent, Map Publication, 13, Wood Street, Calculta).

UNCLASSIFIED PAPERS.

Geography.

1. A Sketch of the Geography and Geology of the Himālaga Mountains and Tibet; in four parts. By Colonel S. G. Burrard, R. E., F, R S., Supdt., Trigonometrical Surveys, and Mr. H. H. Hayden, B. A., F. G. S., Supdt, Geological Survey of India. Calcutta, 1907-08.

UNCLASSIFIED PAPERS-(Continued).

Geography-(Continued).

Part I.-The High Peaks of Asia.
" II.-The Principal Mountain Ranges of Asia. $\}$ Price Rs. 2 or $2 / / 8^{d}$ per
; III.-The Rivers of the Himalaya and Tibet. $\}$ part.
" IV.-The Geology of the Himalaya.
2. *Report on the Identification and Nomenclature of the Himalnyan Peaks as seen from Kātmāndu, Nepāl. Calcutta, 1904.
3. Routes in the Western Himālaya, Kashmír, etc. By Lieut.Colonel T. G. Montgomerio, R. E., F. R.S., F. R. G. S. Third Edition. Revised and corrected. Dehra Dūn, 1909. (Out of print.)

Special Reports.

4. Report on the Recent Determination of the Longitude of Madras. Calcutta, 1897. (Out of. print).
5. *Report on the Observation of the Total Solar Eclipse of 6th April 1875 at Camorta, Nicobar Islands. By Colonel J. Waterhouse. Calcutta, 1875. (Out of print).
6. *The Total Solar Eclipse, January 22, 1898. Dehra Dūn, 1898.
(1) Report on the observations at Dumrann.
(2) Report on the observations at Pulgaon.
(3) Report ou the observations at Sahdol,
7. *Report on Local Attraction in India, 1893-9士. By Captain S. G. Burrard, R.E. Calcutta, 1895. (Out of print.)
8. *Report on the Trigonometrical Results of the Earthqualse in Assam. By Captain S. G. Burrard. Calcutta, 1898. (Out of print.)
9. *Notes on the Topographical Survey of the $\frac{1}{50,000}$ Sheets of Algeria by the Topographical Section of the "Service Geographique de l'Armèe". By Captain W.MI. Coldstream, R.E. Calcutta, 1906.
10. *The Simla Estates Boundary Nurrey on the scale of 50 feet to 1 inch. By Captain E.A. Tandy, R.E. Calcutta, 1906.

Geodesy.

11. Notes on the Theory of Errors of Observation. By J. Eccles, M.A. Dehra Dūn, 1903. Price As. 8 or \mathcal{S}^{d}.
12. *Note on a Change of the Axes of the Terrestrial Spheroid in relation to the Triangulation of the G.T. Survey of India. By J. de Graaff Hunter, M.A. Dehra Dūn. (Out of print.) Now incorporated in Professional Paper No. 16.

Projections.

13. Un the projection used for the General Maps of India. Debra Dūa, 1903. (Out of print).
14. *On the deformation resulting from the method of constructing the International Atlas of the World on the scale of ono to one million. By Ch Lallemand. Translated by J. Eccles, M.A., together with tables for the projection of $1 / \mathrm{M}$ Maps on the Intermational system. Dehra Dūn, 1912. (Out of print).

Mapping.

15. *A Note on the different methods by which hills can be represented upon maps. By Colonel S.G. Burard, C.S.I., R.E., F.R.S., Surveyor General of India. simla, 1912.
16. *A Note on the representation of hills. By Major C. L. Robertson, C.ML.G., R.E. Dehra Dūu, 1912.
17. *A Note on the representation of hills on the Maps of India. By Major F. W. Pirrie, I.A. Dehra Dūn, 1912
18. *A consideration of the Contour interrals and Colour Scales best suited to Indian 1/M maps. By Captain M. O'C. Tandy, R.E. Calcutta, 1913.
PROFESSIONAL PAPERS-Price Rupec 1 or $1^{s} / 4^{d}$ per volume, except where otherwise stated.
No. 1-Projection-(On the Projection for a Map of India and adjacent Countries on the scale of $1: 1,000,000$. By Coloncl St. G. C. Gorc, R.E. Second Edition, Dehra Dūn, 1003.
No. 2-Base Lines-Method of measuring Geodetic. Bases by means of Metallic Wires. By M. Jüderin. (Translated from Mēmoires Prēsentès par Divers Savanta a 1'Acadèmie des Eciences de l'Institut de France). Dehra Dūn, 1899. (Out of print.)
[^7]
PROFESSIONAL PAPERS-(Continued).

No. 3-Base Lines-Method of measuring Geodetic Bases by means of Colby's Compensated Bars. Compiled by Lieutenant H. McC. Cowie, R. E. Dehra Dūn, 1900. (Out of print.)
No. 4-Spirit-levels-Notes on the Calibration of Levels. By Lieutenant E. A. Tandy, R. E. Dehra Dūn, 1900. (Out of print.)
No. 5-Geodesy-The Attraction of the Himālaya Mountains upon the Plumb-Line in India. Considerations of recent data. By Major S. G. Burrard, R. E. Second Edition. Dehra Dūn, 1901. Price Bs. 2 or $2^{s} / 8^{d}$.
No. 6-Base Lines-Account of a Determination of the Co-efficients of Expansion of the Wires of the Jäderin Base-Line Apparatus, By Captain G. P. Lenox. Conyngham, R. E. Dehra Dūn, 1902.
No. 7-Miscellaneous. Calcutta, 1903.
(1) On the values of Longitude employed in mnps of the Surver of India.
(2) Levelling across the Ganges at Dāmukdia.
(3) Experiment to test the incrense in the length of a Levelling Staff due to moisture and temperature.
(4) Description of a Sun-dial designed for use with tide gauges.
(5) Nickel-steel alloys and their application to Geodesy. (Translated from the French.)
(6) Theory of electric projectors. (Translated from the French.)

No. 8-Magnetic-Esperiments made to determine the temperature co-efficients of Watson's Magnetographs. By Captain H. A. Denholm Fracer, R. E. Calcutta 1905.

No.9-Geodesy-An Account of the Scientific work of the Survey of India and a Comparison of its progress with that of Foreign Surveys. Prepared for the use of the Survey Committee, 1905. By Lieutenant-Colonel S. G. Burrard, R. E., F. R. S. Calcutta, 1905.

No. 10-Pendulums-The Pendulum Operations in India, 1903-1907. By Major G. P. Lenox-Conyngham, R, E. Dehra Dūn, 1908. Price Rs. $2-8$ or $3 s / 4^{d}$.

No. 11-Refraction-Observations of Atmospheric Refraction, 1905-09. By H. G. Shav, Survey of India, Dehra Dūn, 1911. (Out of print.)
No. 12-Geodesy-On the Origin of the Himālaya Mountnine. By Colonel S. G. Burrard C. S. I., R. E., F. R. S. Calcutta, 1912.
No. 13-Isostasy-Investigation of the Theory of Isostasy in India. By Major H. L. Crosthuait, R.E. Dehra Dūn, 1912.
No. 14-Refraction-Formulæ for Atmoshpheric Refraction and their application to Terrestrial Refraction and Geodesy. By J. de Graaff Hunter, M. A. Dehra Dūd, 1913. Price Rs, 2 or $2 \approx / 8^{d}$.
No. 15-Pendulums-The Pendulum Operations in India and Burma, 1908-13, By Captain H. J. Couchman, R. E. Dehra Dūn, 1915. Price Rs. 2.8 or $3{ }^{3} / 4^{d}$.
No. 16-Geodesy-The Earth's A ses and Triangulation. By J. de Graaff Hunter, M.A. (at press).
DEPARTMENTAL PAPERS SERIES. (For departmental use only.)
No. l-Type-A consideration of the most suitable forms of type for use on maps. By Captain M. O' O. Tandy, R. E. Dehra Dūn, 1913.
No. 2-Symbols-A review of the Boundary Symbola used on the mape of various countries. By Captain MI. O'C. Tandy, R. E. Dehra Dūn, 1913.
No. 3-Maps-Extract from "The New Map of Italy, Scale 1: 100,000." By Luigi Giannitrapani. Translated from the Italinn by Major W. M. Coldstream, R.E. Debra Dūo, 1013.
No. 4-Town Surveys-A report on the practice of Town Surveye in the United Eingdom and its application to India, By Llajor C. L. Robertson, C.M.G., R.E. Dehra Dūn, 1913.
No. 5-Stereo-plotter-The Thompen Stereo-plotter and its use, with notes on the field work. By Lieutenant K. Mason, R.E. Dehra Dūn, 1913.
No. G-Levelling-Levelling of High Precision. By Ch. Lallemand. Translated from the French by J. de Graaff Hunter, M.A. Dehra Dūn, 1914.
No. 7-Standard Barb-Bar Comparisons of 1907 and 1908. By Major H. McC Covıe, R.E. Dehra Dūd, 1915.
No. 8-Helio-zincography-Keport on lubber Off-set Flat bed Machine Printing. By Captain S. W. Sackuilla Hamslton, R.E. Calcutta, 1915.

PROFESSIONAL FORMS.

A large number of forms for the record and reduction of Survey Operations are stocked at $\mathrm{D} \epsilon$ hra. A list of these can be obtained from the Superintendent of the Trigonometrical Survey, Dehra Dūn, U. P.

PUBLICATIONS OF THE ROYAL SOCIETY.

(Obtainable from Messrs. Dulau \& Co., 37, Soho Sguare, London, W., or Messrs. Harrison \& Sons, St. Martin's Lane, Loudon, or the Royal Society at Burlington House, London.)

1. Philosophical Transactions, Series A, Volume 186, 1895. India's Contribution to Geodesy, by General J. T. Walker, R.E., C.B., F.R.S., LL.D.
2. Philosophical Transactions, Series A, Volume 205, pages 289-318, 1905. On the Intensity and Direction of the Force of Grarity in India, by Lieutenant.Colonel S.G. Burrard, R.E., F.R.S.
3. Proceedings, Series A, Volume 90 , pages $32-40,1914$. On the effect of the Gangetic Alluvium ou the Plumb-Line in Northern lndia, by R. D. Oldham, F.R.S.
4. Proceedings, Series A, Volume 91, pages $220-238,1915$. On the origin of the IndoGangetic trough, commonly called the Himalayan Foredeep, by Colonel Sir S. G. Burard, K.C.S.I., R.E., F.R.S.

AGENTS FOR THE SALE OF INDIAN OFFICIAL PUBLICATIONS.

LONDON

A. Constamle \& Co., 10, Orange Street, Leicester Square, W.C.
P. S. King \& Son, 2 and 4, Great Smith Street, Westminster, S.W.
Keqay Pafl, Tuencif, Tribner \& Co., 68, Carter Lane, E.C.
B. Quanticil, 11, Grafton street, New Bond Street, W.
Henry S. King \& Co., 65, Coruhill, E.C.
Grindlar \& Co., 54, Parliament Street, S.W.
T. Fisien Unwin, Litd., 1, Adelphi Terrace, W.C.
W. T'macker \& Co., 2, Creed Lane, Ludgate Hill, E.C.
Lezac \& Co., 46, Great Russell Street, W.C.
Edifamd Stanfoid, Ltro. (for maps only), 12-14, Long dcre, W.C.

EDINBURGH.
Oliterand Boid, Tweeddale Court.
DUBLIN.
E. Ponsonit, Ltd, 1lG, Grafton Street.

OXFORD.
B. H. Blackwell, 50 and 51, Broad Street.

CAMBRIDGE.

Deigiton, Bell \& Co., Ltd., Trinity Street.
ON THE CONTINENT.
Emaest Lerolx, Rue Bonaparte, Paris, France. Martincs Nifioff, The Hague, Holland.

INDIA.
Thicker, Spink \& Co., No. 3, Esplanade, East, Calcutta, and Simia.
Nemman \& Co., No. 4, Dalbousie Square, Calcutta.
Lal Chand \& Sons, No. 76, Lower Circular Road, Calcutta.
Tife Secretari, Indian School Supply Depot, No. 300, Bow Bazar Street, Calcutta, and Dacen.
Rai Saimb M. Gulab Singif \& Sons, Lahore.
Iuicker \& Co., Litd., Bombay.
D. B. Taraporetala, Sons \& Co., Bombay.

Higginbotham \& Co., Madras.
Proprietor, Mafisilite Printing Works, Mussoorie.

Soperintendent, American Bappist Mission Press, 70, Merchant Street, Raggoon.
Cockburx's Agency, Srīuagar.
Burman \& Co., Muzaffarpur.
Triangulation pamphlets and charts published up to 30th September 1916, with years of publication.

MODERN SURVEY \& PUBLICATION
(Northerm Circle).

SURVEY \& PUBLICATION
(Southern Circlo).

MODERN SURVEY AND PUBLICATION

MODERN ONE-INCH PUBLICATION

(Southora Cirole).

INDEX TO SHEETS OF

PROVISIONAL ONE-INCH PUBLICATION
(Bastom (Simple).

DEGREE SHEET SERIES

scale 1 Inch th 1 Midus.

INDIA AND ADJAOENT COUNTRIES SERIES Seale 1:1,

The thick lines show the marging of the steete of the taternationat Map of the Wortd, saute $1: 5, \mathrm{man}, \mathrm{mm}$. Each mbect is desi gnated by the letter N (Northern hemiaphere), followed by the marsinat letter and namber $\mathrm{N} . \mathrm{E}+\mathrm{s} \mathrm{B}$
The ngures in circles are the numbers of the shicets of the ladia and

merave
Sheets publighed
under publication
" in hand.
To accompany Genema Report 1915-16.

INTERNATIONAL SERIES
Scale 1:1,000,000.

[^0]: - Vide Index Map No. 1t.

[^1]: - Vide Index Map No. 14.

[^2]: * Fide Index Map No. 14.

[^3]: Note.-When the sign is + the V.F. is greater, and when - it is less than the mean

[^4]: Note．－When the sign is＋the Dip is greater，and when－it is less than the mean，

[^5]: * The reanta of the Simla observations as published in the Daily Weather Report are also given for the sake of comparisun. The Dehra estimates were made quite independently.

[^6]: Barma Chittagong and Balachistan triangalation, the Assam Longitadinal, the Sambalpar Meridional, and the Gilcit Series, with a few recent secondary serics in India,

[^7]: * For Deparimental uec only.

